Part 2

Port stealing

Outline

GOAL2: port stealing attack

How do we get there?

1. 802.1d bridge emulation with Linux bridge-utilities
2. Switched LAN emulation with NETKIT

3. L2 and L3 packet forging with Python and SCAPY

Bridge Utilities

Linux bridge-utlities is a program that implements a subset of the
ANSI/IEEE 802.1d standard (Media Access Control (MAC) Bridges).

By using this tool a Linux station can be transformed in a real switch/
bridge as defined in the standard and therefore real (and virtual)
interfaces can be “bridged” together.

bridge-utilities also implements STP (Spanning Tree Protocol).

Bridge-utilities consists in a Kernel module (networking -> 802.1d
Ethernet Bridging) and a user space application (brctl).

Debian-like package installation:
S apt-get install bridge-utils

How to turn a PC into a switch

3 ports SWITCH

1 ethO [| ethl [| eth2

A virtual interface br0 is created and a subset of the real network interfaces

can be “interconnected” to this virtual interface as they where the actual port
of a Ethernet switch.

All the 802.1d operations are performed in the OS Kernel.

Basic commands

Create/destroy a bridge device:
$ brctl addbr "bridge name™
$ brctl delbr "bridge name“

Note: Don't set the IP address, and don't let the startup scripts run DHCP on the Ethernet
interfaces either. The IP address can be set after the bridge has been configured.

Add/delete interface to a bridge device:
$ brctl addif “bridge name” “device name”
$ brctl delif “bridge name” “device name”

Show devices in a bridge:
$ brctl show

Show the forwarding DB:
$ brctl showmacs “bridge name”

Important!
Remember to bring the bridge interface UP when all interfaces have been added

NETKIT switch emulation

VM with BRCTL

SWITCH

NETKIT lab set-up

Iface: ethO
192.168.1.2
00:00:00:00:00:02

L oomans
<

pc2

iface: ethO
192.168.1.1
00:00:00:00:00:01

> Collision
Domain A
\ I

pc

SWITCH
sw1

iface: ethO
192.168.1.3
00:00:00:00:00:03

Collision
Domain C

Lab set-up commands

Set root password on the hostmachine:
knoppix:$ su

knoppix:# passwd

(Enter New Unix Password)

knoppix:# exit

Start the virtualmachines:
knoppix:$ vstart pcl --ethO=A
S vstart pc2 --ethO=B
knoppix:$ vstart pc3 --eth0=C
$ vstart swl --ethl=A --eth2=B --eth3=C

knoppix:

knoppix:

Lab set-up commands

Network set-up on virtualmachines:

pcl:

pcl:
pcl:
pcl:

pc2:

pc2:
pc2:
pc2:

pc3:

pc3:
pc3:
pc3:

Uy

Uy

ip
ip
ip

ip
ip
ip

ip
ip
ip

link set ethO up
link set ethO address
address add 192.168.1.

link set ethO up
link set ethO address
address add 192.168.1.

link set ethO up
link set ethO address
address add 192.168.1.

00:00:00:

1/24 dev

00:00:00:

2/24 dev

00:00:00:

3/24 dev

00:00:01
ethO

00:00:02
ethO

00:00:03
ethO

Lab set-up commands

Preliminary set-up on the switch machine — sw1:

swl:
swl:
swl:
swl:

Ur Uy Uy Ay

ip link set ethl
1p link set eth?
ip link set eth3
nohup tcpdump -1

Bridge creation on sw1:

swl:
swl:
swl:
swl:
swl:

U U0 Uy O Uy

brctl addbr br0
brctl addif br0
brctl addif br0
brctl addif br0
ip link set bro0

up
up
up
any -w /hosthome/dump.pcap -s0 &

ethl
eth?
eth3

up

Launch wireshark on the host machine:

knoppix:$ wireshark /

home/knoppix/dump.pcap

Proof of concept

Monitor the forwarding database:
swl:S watch ‘brctl showmacs br0O | grep -v yes’

Let’s populate the FDB:
pcl:S ping 192.168.1.2
pc2:$ ping 192.168.1.3

What is on the FDB?

port no macaddr 1s local? agelng time
1 00:00:00:00:00:01 no 10.00
2 00:00:00:00:00:02 no 5.00
3 00:00:00:00:00:03 no 1.00

Question: why all stations in the FDB whit only 2 pings?
Question2: what happens if you bring down br0?

Port stealing attack — How to perform it

Let’s say an attacker (evilO, behind switch port 1) wants to steal pc2 (the
victim) port on the switch (port 2).

SW1 has to be “tricked” into thinking that pc2 is behind the same switch port
as evilO (port 1)

To do that we evilO has to send a Ethernet packet with 00:00:00:00:00:02 as
source MAC address

We say that evilO has to “spoof” the victim’s MAC address, or in other words
to “forge an Ethernet packet with spoofed source MAC address”

evilO has to send “whatever” packet (ARP, raw IP, ICMP, empty UDP/TCP,
DNS, etc..) with spoofed source MAC address and the switch will update the
FDB properly

Port stealing: attack scenario

Iface: ethO
192.168.1.2
00:00:00:00:00:02

iface: ethO
192.168.1.200
00:00:00:00:00:FF

Collision
Domain B

evilO
Collision

Domain A

iface: ethO
192.168.1.3
00:00:00:00:00:03

iface: ethO
192.168.1.1
00:00:00:00:00:01

Collision
Domain C

SWITCH
sw1

NOTE - the files for this lab are in:
esercitazione-2010/portstealing/

Packet forging

Writing tools for packets forging to the Ethernet layer is not as easy as
sending data with TCP/UDP standard sockets.

To do that we would need to use C raw socket APl and write packets
“field by field” (e.g.: eth.src, eth.type, ip.checksum ecc...)

We have two different type of raw socket:
PF_INET

PF_PACKET

For those who are interested, take a look at the following brief tutorial
about C RAW socket programming:

http://mixter.void.ru/rawip.html

RAW Server

Receiving Ethernet frames not addressed to your machine is not trivial

MAC implementations silently discard frames addressed to other MAC
address (except for multicast Ethernet address)

To work around this design limitation we can configure the NIC into
promiscuous mode (i.e. to not perform any mac-based filtering at firmware

level)

Anyway OS Kernel usually filters these packets. To overcome this limitation,
we need to open RAW socket. Such sockets short-circuit the application level
with the Ethernet level, delivering to your application all the traffic your NIC

sees.

All further non-Ethernet processing is up to your application

SCAPY

Fortunately someone did this job for us and provided a python library
for packet forging scripting.

Python is a interpreted and object oriented programming language.

SCAPY is a python library that provide (among other things) an
interactive shell for packet forging (from L2 to L7). Moreover SCAPY
interactive shell provide command for packet transmission, reception
and decoding.

(this is a simplified view of SCAPY limited to what we are interested in.
For a detailed description take a look at:

http://www.secdev.org/conf/scapy pacsec05.handout.pdf)

SCAPY example

Build a packet layer by layer, send it and wait for the reply:
pc:$ sudo scapy

>>>3=1P (dst="www.uniroma?2.it", 1d=0x42)
>>> a.ttl=12

>>>pb=TCP (dport=80, flags=%"S")

>>> srl (a/b)

What is needed but not specified is automatically done by scapy:

1. ip.srcis set by default routing

2. tcp.sportisrandom

3. a DNSrequest is automatically sent to resolve www.uniroma?2.it
4. all other unspecified fields are set by scapy

Just take a look at the C code to see the difference...

SCAPY example 2

Welcome to Scapy (2.0.0.11 beta)

>>> p = Ether()/IP()/ICMP()/"Ciao Mondo”

>>> p[IP].dst = "8.8.8.8"

>>> p

<Ether type=IPv4 |<IP frag=0 proto=icmp
dst=8.8.8.8 |<ICMP |<Raw 1load='Ciao Mondo' |
>>>>

>>> r = srpl(p)

Begin emission:

Finished to send 1 packets.

*k

Received 1 packets, got 1 answers, remaining ©
packets

<Ether dst=00:13:02:49:1c:f5
src=00:1f:3f:f2:00:6d type=IPv4 |<IP version=4L
ihl=5L tos=0x0 len=46 id=19699 flags= frag=0L
ttl=51 proto=icmp chksum=0xb81lc src=8.8.8.8
dst=192.168.178.7 options='"' |<ICMP type=echo-
reply code=0 chksum=0x66fc id=0x0 seq=0x0 |<Raw
load='Ciao Mondo\x00\x00\x00\x00\x00\x00\x00\x00"
| >>>>

>>>

Attacker set-up

Start the virtual machine (on host machine):

knoppix:$ vstart evil0 --ethO=tap,10.0.0.1,10.0.0.2 --
ethl=A -M 64

DNS configuration :
evilO:$S echo “namserver 194.20.8.1"” > /etc/resolv.conf

Install scapy package:

evilO:S$S apt-get update && apt-get install python-scapy
(or — packet already in /root)

evilO:$ dpkg —-i *.deb

Network Setup:

evil0:$ ip link set eth(0 down

evilO:$ ip link set ethl up

evilO:$ ip link set address 00:00:00:00:00:FF dev ethl
evilO:$ ip address add 192.168.1.200/24 dev ethl

Packet forging and transmission

evil0:$ scapy

>>>pck = Ether (src="00:00:00:00:00:02")/ 1IP
(dst=%"192.168.1.3") / ICMP ()

>>>sendp (pck)

ETHERNET IP ICMP
src: 00:00:00:00:00:02 src: 192.168.1.1 echorequest
dst: 00:00:00:00:00:03 dst: 192.168.1.3 seq: 01
type: 0x0800 proto: 01 (ICMP)

Note: sendp (and other send() methods) takes as optional argument:
loop=0]1
count=num (num: number of packets to send)

Summary

1. What can the victim do to prevent this attack?

5.

. Why is this attack more theoretical then

practical?

. How the victim can take the switch port back?
4. What can the attacker do to give the port back

to the victim?
Is there another way to do this attack?

