
LINUX NETWORK TOOLS 



Let’s see some real traffic! 

tcpdump 

wireshark 



tcpdump 
the command line network analizer 

For documentation:  
–  man tcpdump (program usage) 
–  http://danielmiessler.com/study/tcpdump/ (nice tutorial) 

Essentials: 
!  Capture all packets on all interfaces and dump the entire packet: 
   tcpdump –i any -X 

!  Capture all packets on all interfaces and don’t convert addresses to names: 
   tcpdump –i any -n 

!  Capture all packets on eth0 and save the trace on file (the whole packets!): 
   tcpdump –i eth0 –w file –s0 

!  Capture 10 packets on eth0 to/from $ADDR: 
   tcpdump –i eth0 –c 10 host $ADDR 

!  Capture all TCP packets to/from port 80 on eth0: 
   tcpdump –i eth0 tcp port 80 

!  Capture all packets with destination or source address != $ADDR and port in the 
range [10000:20000]: 

   tcpdump –i eth0 host not $ADDR portrange 10000-20000 
 



tcpdump 
output format 

Normal output 

Verbose output 



tcpdump 
output format 

Packet content in HEX and ASCII 



tcpdump advanced filtering 
!  man pcap-filter (filter syntax details) 
!  pcap filter primitives include 

–  host, dst host, src host!
–  port, dst port, src port!
–  ether host, ether dst, ether src!
–  net, dst net, src net!
–  portrange, dst portrange, src portrange!
–  less, greater!
–  ip proto, ip6 proto, ether proto!
–  ip broadcast, ip multicast!
–  ip, ip6, arp, tcp, udp, icmp!
–  ifname!
–  proto [ expr : size ]!

•  ip[16:4] = 0xffffffff  " DEST BROADCAST IP PACKET!

!  Example:!
–  tcpdump -ni any "ip[12:4] = 0xac10a69c”!



NERD QUIZ 

What do they mean?!
!
(1) ether[0] & 1 != 0!
(2) ip[0] & 0xf != 5 !!
(3) ip[6:2] & 0x1fff = 0!
!
!
!
Are you sure?!
Shall we light them? !!

!



Solutions 

ether[0] & 1 != 0 ! !(ethernet multicast/broadcast packet)!
ip[0] & 0xf != 5! ! !(ip packets with option)!
ip[6:2]  & 0x1fff = 0 !(ip un-fragmented packets or frag0)!
!

!



Wireshark 
!  Wireshark is a graphical packet analyzer 
!  Like tcpdump can analyze live streams or 

files 
!  It’s compatible with tcpdump (pcap format) 

traces  
!  It provides additional features: 

– Better protocol parsing 
– Statistics tool 
– Exporting 
– Better Filtering (different syntax) 
– Can be extended to understand proprietary 

protocol 



Wireshark 



Wireshark 

Filtering  

I/O graphs 
Protocol hierarchy 

Trace export 



Wireshark and NETKIT 

!  Can I use wireshark to capture traffic on a 
NETKIT VM? 
– No! But I can use wireshark to open a trace 

captured with tcpdump!
–  It’s only a matter of copying the file from the 

VM to the HOST machine (let’s use the 
hosthome directory) 

– Second option: copy the file with nc, scp 
or rsync (later on!)!



ping!
!  ping is one of the oldest IP utilities around 
!  ping asks another host if it is alive, and 

records the round-trip time between the 
request and the reply 

!  ping relies on ICMP echo-request and echo-
reply packets (next slide..) 

!  warning: in some cases ICMP traffic is 
dropped by firewalls. We can not assume that 
all machines are down if they don’t reply to a 
ping! 



ICMP basics 
!  The Internet Control Message Protocol is one of 

the core protocols of the IP Suite 
!  ICMP packets are mainly used for diagnostic 

(ping, traceroute, timestamp request) and error 
notification (routing anomalies, unreachability, TTL 
expired, etc!) 

!  It goes directly on top of IP (but it can’t be seen as 
a transport protocol) 
–  IP.proto = 1 

!  We will focus on ICMP Echo Request/Reply. We’ll 
see (and force the transmission) of other ICMP 
messages later on! 



ICMP header 

source: http://nmap.org/book/tcpip-ref.html 



ping output and ICMP packets 



ping usage 
!  For a complete doc: man ping!
!  Essentials 

–  Don’t convert IP addresses to names (-n) 
ping -n 160.80.103.147 

–  Specify the number of packets (-c) and display only the 
summary line (-q) 
ping -q -c 10 160.80.103.147!

–  Specify the source address of the packets (-I) 
ping –I 10.0.0.12 160.80.103.147!

–  Stress the network (flood -f) and specify the size of the packet 
(-s) 
ping -c 5000 -s 512 -f 160.80.103.14!

–  Record the network route (many hosts ignore the ROUTE 
RECORD option. Let’s use traceroute for that) 
ping -R 160.80.103.14!
!



traceroute!
!  A computer network diagnostic tool for displaying the route 

and measuring transit delays of packets across an IP network 
!  traceroute sends a sequence of packets to the destination 
!  traceroute works by increasing the TTL value of each 

successive (set of ) packet(s) 
!  traceroute reconstructs the path to the destination by 

receiving the ICMP TTL Exceeded message by each router 
traversed by the packet 

!  Implementations on Unix-like OSs use UDP  with ports from 
33434 to 33534. Others use ICMP Echo Request 

!  For UDP version, traceroute ends when a port 
unreachable is received from the destination 

!  For ICMP version, traceroute ends when a ICMP Echo 
Reply is received for the destination 



How does traceroute work? 

TTL1 

TTL2 

TTL3 

TTL EXCEEDED! 

TTL EXCEEDED! 

PORT UNREACHABLE 
or 

ECHO REPLY 



traceroute!

Basis usage: 
 traceroute [options] $DEST_HOST!

!
Useful options: 

!-q <num_queries>: number of queries!
!-i <iface_name>: source interface!
!-s <addr>: source address!
!-M <ttl>: initial TTL!
!-m <ttl>: maximum TTL!
!-w <time>: wait time for a probe response !

RTT probe timeout 



netcat!
!  Utility that reads and writes data through IP transport session, either 

TCP or UDP 
!  It can create TCP or UDP socket in listening 

–  nc -l 9000  (open a TCP socket listening on port 9000) 
–  nc -lu 9000 (open a UDP socket listening on port 9000) 

!  It can connect a TCP socket   
–  nc 160.80.103.147 9000!

!  It can create a UDP socket for sending packets 
–  nc –u 160.80.103.147 9000!
!

!  NOTE: there are 2 versions of nc. One is the GNU version. The 
other one is the BSD porting. These 2 versions have a slightly 
different syntax and options. For example (that’s the case of nc on 
the NETKIT VM), you might have to use the following syntax for 
listening sockets:  
–  # nc -l -p 9000!



Exercise: TCP connection 
!  Let’s get back to Lab0 
!  On PC1 create a listening TCP socket on port 

9999 
!  On PC2 connect a TCP socket to PC1:9999 
!  Write something and press CTRL+C to close 
!  Sniff the entire TCP flow on router 

(connection, data, close – use tcpdump and 
write to a file) 

!  Display the trace with wireshark 



Exercise: TCP connection 



Advanced use of netcat!
!  We already saw nc as a chat # 

!  We can also transfer files: 
–  server:# nc -l 9000 > received_file!
–  client:# cat file_to_send | nc $server 9000!

!  Get a web page (like wget) 
–  client:# printf "GET / HTTP/1.0\\r\\n\\r\\n\n" 
| nc 160.80.103.147 80!

!  Remote shell (dangerous – removed from bsd porting) 
–  server:# nc -l 9000 -e /bin/bash!
–  client:# nc $server 9000!

!  Perform a port scan (-z option) 
–  client# nc -v -z $target 7-1023!



ss!
!  Utility to investigate sockets 
!  All TCP sockets, all UDP sockets, all established ssh / ftp / http / 

https connections, all local processes connected to X server, etc! 
!  Basic usage: # ss [options] [filter]!

-s: display summary!
-a: display both listening and non-listening!
-l: display listening socket!
-t: display TCP sockets!
-u: display UDP sockets!
-p: display processes using sockets!
!
And many more…!
!

!  Documentation: /usr/share/doc/iproute-doc/ss.html!



ss output 



Remote access - telnet!
!  Telnet protocol provides a fairly general, bi-directional, eight-bit byte 

oriented communications facility 
!  A telnet connection is a Transmission Control Protocol (TCP – 

listening port 23) connection used to transmit data with interspersed 
telnet control information 
–  Data: 1st bit 0 (ASCII character) 
–  Commands: 1st bit 1 

!  Nice article describing the protocol:  
–  http://support.microsoft.com/kb/231866 

!  Typical use: remote shell 
!  Example PCAP trace:  

–  http://stud.netgroup.uniroma2.it/cgrl/traces/telnet.pcap 
!  Client/server implementation for virtually all OSs! 

–  On linux: telnet/telnetd!
–  daemon usually not installed (apt-get install telnetd)!

!  Due to several security aspects it has been “abandoned” in favor of 
SSH 



Remote Access - SSH 
!  Secure Shell (SSH) is a protocol for secure remote login and other 

secure network services over an insecure network 

!  RFCs define 3 major components: 
–  The Transport Layer Protocol (RFC4252) 
–  The User Authentication Protocol (RFC4253) 
–  The Connection Protocol (RFC4254) 

!  OpenSSH  (client/server implementation): 
–  Encryption, Authentication, Data integrity 
–  Secure file transfer (scp) 
–  X session forwarding 
–  Port forwarding  
–  SOCKS4|5 proxy 
–  Public Key authentication 

!  We won’t take a look at the protocol, but we’ll focus on some 
practical uses 



OpenSSH installation and 
configuration (DEBIAN) 

!  openssh-client present in almost all Linux distribution (DEBIAN included) 
!  openssh-server usually not included 

–  apt-get install openssh-server!
!  Configuration file in: 

–  Server: /etc/ssh/sshd_config!
–  Client: /etc/ssh/ssh_config!

!  Documentation: 
–  man (ssh_config|sshd_config)!

!  Useful configuration parameters (server, except ServerAliveInterval): 
–  Protocol (1|2)!
–  PermitRootLogin (yrs|no)!
–  PasswordAuthentication (yes|no) !!
–  X11Forwarding (yes|no) 
–  ServerAliveInterval <seconds> 
–  DenyUsers <user list> and DenyGroups <group list>!
–  UseDNS no!
!

!  Remember to restart ssh to apply any changes in the configuration file 
–  /etc/init.d/ssh restart!



OpenSSH basic usage 
To connect to a ssh server just type 

ssh user@server!

!  The server send it’s public key fingerprint 
!  The program asks you to verify the authenticity of the key 
!  Once the host is recognized, the server address is put in the file ~/.ssh/known_host!

–  To check fingerprints on server: ssh-keygen -l -f /etc/ssh/ssh_host_rsa_key!
!  What if the key fingerprint doesn’t match the one stored in ~/.ssh/known_host? See the 

next slide! 



SSH key authentication failure 

Not necessarily something nasty is happening! 
E.g.: ssh has been reinstalled or a big update has  
request the generation of a new key (pair) 



SSH public key authentication 
!  It might happen that a sysadmin doesn’t trust the 

strength of a user password 
!  Users’ account violation can lead to apocalyptic 

scenarios (sudoers users!) 
!  Public key authentication is a stronger auth method 
!  Users are requested to generate a public/private key  
!  The public key is manually (and over a secure 

channel) installed on the server 
!  The user is not authenticated via user/password 

verification, but via a “safer” cryptographically 
challenge/response mechanism (later on!) 



Public key authentication with 
OpenSSH 



Public key authentication with 
OpenSSH 

!  The client generates the key pair 
ssh-keygen -t (rsa|dsa)!

!  By default, the public key is stored in: 
~/.ssh/id_rsa.pub! ! !!
! ! !or!

~/.ssh/id_dsa.pub!
!  The public key has to be appended to the file ~/.ssh/

authorized_keys in the home of the authorized user 
!  1st way, assuming that id_rsa.pub has been securely 

copied on the remote machine 
cat id_rsa.pub >> ~/.ssh/authorized_keys!

!  2nd way, with a tool provided by OpenSSH (from the client) 
ssh-copy-id user@server!



Exercise 

!  Back to Lab0-interfaces 
!  Install SSH server on router (if needed) 
!  Force public key authentication 
!  Configure public key authentication for 

user@router 



Secure file transfer over SSH 
!  Basic usage 

–  scp [-r] [[user@]host1:]file1 ... [[user@]
host2:]file2!

!  Examples!
1) scp file1 marlon@example.org:!
2) scp marlon@example.org:file2 /home/marlon/dir/!
3) scp –r dir/ marlon@example.org:/home/marlon/
dir_target !
!
Where: 
1)  file1 is copied in marlon’s home on the remote host 
2)  file2 (in marlon’s remote home) is copied in the specified local 

path with the same name 
3)  The local directory dir is recursively copied into the specified 

remote path 



OpenSSH advanced usage 
!  Running commands over ssh 

–  ssh username@server “command”!
!  Forward X session 

–  ssh -X username@server!
!  Local Port forward 

–  ssh -L lport:remote_addr:rport username@server!
!  Remote port forward 

–  ssh -R rport:local_addr:lport username@server!
!  Socks5 proxy 

–  ssh -ND 9999 username@server!
!  Remote filesystem with sshfs 

–  sshfs  user@host: mountpoint!

!  Nice tutorials:  
–  http://www.subhashdasyam.com/2011/05/25-best-ssh-commands-

tricks.html 



Local Port Forwarding example 

Lab1-ssh 
Problem: router1 doesn’t have the route to 192.168.0.0/24 (as in real world topologies!) 
(Note: router1 and router2 on the same lan is not a real topology! let’s pretend they reach each other 
through the internet!) 
Goal: connect pc to server:2024 with nc trough a “SSH tunnel” 
Preliminaries: 
Install openssh-server on router2 (if not already installed) 
Create a guest account (user) for ssh login on router2 (set the password for “user” account) 
 
To reach server from pc: 
1)  Put server:2024 in listening on port 2024 

! !server# nc -l -p 2024!
2)  Run ssh port forwarding command on pc 

! !pc# ssh -NL 3456:192.168.0.100:2024 user@8.0.0.2!
3)  Connect nc to server 

! !pc# nc 127.0.0.1 3456!

INTERNETLAN A
10.0.0.0/24

router1pc

LAN B
192.168.0.0/24

server

eth0:10.0.0.100 eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.1
eth0: 8.0.0.2

router2

eth0:192.168.0.100

TAP 
192.168.102.2 



Local Port Forwarding: how it works 

ssh 

pc 

nc 127.0.0.1 
3456 

router2 

ssh 
ssh  tunnel 
between pc and router2 

nc traffic between pc and server 

nc -l -p 
2024 

server 
decapsulated nc traffic 

ssh process on pc 
intercepts nc packets and 
encsapsulate them into a 
ssh tuunel 

ssh process on server receives 
the packets within the ssh data 
session, de-capsulate them and 
forward them to server 

ip tcp ip tcp “ciao” ssh 

ssh tunnel encrypted data 

IP packet sent by nc SSH tunneling 

to: router2 dst: 22 to: server dst: 2024 



SSH remote port forwarding 
!  Remote port fowarding 

–  ssh -NR r_port:local_addr:l_port user@server!

!  In the previous example, we want to connect a tcp 
socket port 3000 from router2 to pc:2000 
–  pc# ssh  -NR 3000:10.0.0.100:2000 user@8.0.0.2!

!  We put nc in linstening on pc 
–  pc# nc -l -p 2000!

!  We connect nc from router2 
–  router2# nc 127.0.0.1 3000!



SSH port forwarding “for everyone” 

!  We can also set up a gateway that forwards ports 
for all hosts in a LAN 

!  For example, we can run ssh local port forwaring 
on router1 for all hosts in LAN A 
–  router1# ssh -NL 
3456:192.168.0.100:2024 user@router2 -g!

!
!  For remote port forwarding there’s  no “-g” option 

–  We have to set the following config option in 
sshd_config 

•  GatewayPorts yes!



SSH local port forwarding explained 

INTERNETLAN A
10.0.0.0/24

router1pc

LAN B
192.168.0.0/24

server

eth0:10.0.0.100 eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.1
eth0: 8.0.0.2

router2

eth0:192.168.0.100

pc# ssh -NL lport:remote_addres:rport user@server!

INTERNETLAN A
10.0.0.0/24

router1pc

LAN B
192.168.0.0/24

server

eth0:10.0.0.100 eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.1
eth0: 8.0.0.2

router2

eth0:192.168.0.100

router1# ssh -gNL lport:remote_addres:rport user@server!

nc -l -p rport nc router1 lport 

nc -l -p rport nc 127.0.0.l port 



SSH remote port forwarding explained 

INTERNETLAN A
10.0.0.0/24

router1pc

LAN B
192.168.0.0/24

server

eth0:10.0.0.100 eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.1
eth0: 8.0.0.2

router2

eth0:192.168.0.100

pc# ssh -NR rport:local_addres:lport user@server!

INTERNETLAN A
10.0.0.0/24

router1pc

LAN B
192.168.0.0/24

server

eth0:10.0.0.100 eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.1
eth0: 8.0.0.2

router2

eth0:192.168.0.100

router1# ssh -NR rport:local_addres:lport user@server!

nc -l -p lport nc router2 rport 

nc -l –p lport nc 127.0.0.1 rport 

GatewayPorts yes!



Shared screen and X forward with SSH 

!  Useful trick to share the same remote screen 
1.  ssh to my machine marlonmac.local (or let’s see what address 

I have now!) with the user “student” password “student” 
2.  Attach to a already attached screen with “screen -r -x” 
3.  Have fun! 

!  To run a graphic application on server 
–  Set on server sshd_config:!

X11Forwarding yes!
–    Run ssh on client 

client# ssh -X user@server!
–  Run a graphic app on client 

!client# xclock!



SSH SOCKS5 proxy 

Example:  ssh -ND 9999 username@server !



SSH SOCKS5 test 
!  Copy Lab1-ssh/web_page_test/* into server:/

var/www 
!  Configure firefox on the host machine to use 

a SOCKS5 local proxy 
!  Use router2 as relay to server 

!  Start apache in VM “server” 
!  Open the web page http://192.168.0.100, 

which is VM “server” 



rsync!
!  Rsync is a fast and versatile file copying  tool 
!  Rsync copies files either to or from a remote host, or locally  on  the 

current  host 
!  Delta-transfer Algorithm 

–  reduces the amount of data sent over the network by sending only the 
differences between the source files and  the  existing files in the 
destination 

!  Two modes: 
1.  Through a secure shell (ssh, rsh) 
2.  Contacting a remote rsync daemon directly via TCP 

!  Basic usages (man for the options..): 
rsync -avz --progress foo:src/bar/ /data/tmp!
rsync -av src/ dest/!
rsync -av --delete host::src /dest!
rsync -avd rsync:://host:src /dest!
rsync -ravz --exclude=“*.o” foo:src/bar /data/tmp!

!  Nice tutorial 
–  http://www.thegeekstuff.com/2010/09/rsync-command-examples/ 



Simple backup script with rsync in Lab1-ssh 
#!/bin/sh!
LOCAL=/root!
REMOTE=/var/backup!
HOST=8.0.0.1!
LOG=/var/log/backup.log!
SYNCLOG=/var/log/backup.synclog!
!
#start log!
echo $(date +"%d/%m/%Y") | cat >> $LOG!
echo $(date +"%H:%M.%S") backup started... | cat >> $LOG!
 !
#Rsync!
rsync --delete -azv -e ssh $LOCAL root@$HOST:$REMOTE | cat > $SYNCLOG!
 !
#end log!
echo $(date +"%H:%M.%S") backup ended! | cat >> $LOG!

1) Save the script in 
 /bin/rsyn_backup.sh!

2) Make it executable 
!chmod +x /bin/rsyn_backup.sh!

3) Add the cron job with the command 
!crontab -e!

4) Put the following line 
!0 4 * * * /usr/local/bin/rsync_backup.sh!



wget!
!  GNU Wget is a free utility for non-interactive download of files 

from the Web 
!  It supports HTTP, HTTPS, and FTP protocols, as well as 

retrieval through HTTP proxies 
!   Wget is non-interactive, meaning that it can work in the 

background, while the user is not logged on.  This allows you 
to start a retrieval and disconnect from the system, letting 
wget finish the work 

!  Basic usage: 
–  wget http://www.example.com/!

!  Recursive download (1 folder): 
–  wget -l 1 -r byron.netgroup.uniroma2.it/
~marlon/RAT!

 (Change 1 " “n” for more levels...) 



wget - mirroring!
wget  --recursive --no-clobber --page-requisites --adjust-
extension --convert-links --restrict-file-names=windows --
domains website.org --no-parent website.org!
!
!  --recursive: download the entire Web site 
!  --domains website.org: don't follow links outside website.org 
!  --no-parent: don't follow links outside the directory tutorials/html/ 
!  --page-requisites: get all the elements that compose the page (images, CSS 

and so on) 
!  --adjust-extension: save files with the .html extension 
!  --convert-links: convert links so that they work locally, off-line 
!  --restrict-file-names=windows: modify filenames so that they will work in 

Windows as well 
!  --no-clobber: don't overwrite any existing files (used in case the download is 

interrupted and resumed) 

source:!
http://www.linuxjournal.com/content/downloading-entire-web-site-wget!


