IP addressing and routing

Lorenzo Bracciale Donato Battaglino

IP Address

AS-level INTERNET GRAPH

copyright © 2009 UC Regents. all rights reserved.

Each network interface connected to an IP network MUST have an UNIQUE 32-bit identifier called IP Address

machine representation

Example:

Humans don't like long binary string and prefer to use the "dotted decimal" notation: Example 209.85.129.99 human representation

Well, also IP address expressed in dotted decimal notation are hard to remember. Names sounds better Example extra service

209.85.129.99 <----DNS---> www.google.it

Exercise 1: binary/decimal conversion

224 32

192

11010001 01010101 10000001 01100011

• IP networks are logically divided **subnet**, so that:

- Inside each subnet, two hosts must directly communicate using L2 technology (e.g. ethernet, wifi ...)
- Across different subnet, hosts communicate through routers (one or more)
- IP addresses of the same subnet have <u>same</u> first X bits ("net" part) and a <u>different 32-X bits</u> ("host" part)

- How long is the network part of an IP address??
 - We need some extra information (from 1984, IP address does not give us any hint!)

11010001 01010101 10000001 011<mark>00011</mark>

Host

Net

Alternatively we can use the dotted notation: Example: 209.85.129.99, mask 255.255.255.224 Or the "slash" prefix Example: 209.85.129.99 / 27

IP Address

- Each subnet has two special IP addresses:
 - Net address (all the bits in the host part are 0)
 - Broadcast address (all the bits in the host part are 1)
- Basically a subnet is identified by the net address and the mask

Example : find the network and broadcast addresses of host 209.85.129.99/27

209.85.129.99	11010001	01010101	1000001	01100011
(1P addr nost) 255.255.255.224	11111111	11111111	11111111	11100000
(Subnet Mask)	11010001	01010101	1000001	01100000
(IP addr network)	11010001	01010101	10000001	01100000
209.85.129.127 TP addr broadcast)	11010001	01010101	10000001	01111111

Subnet: example

Exercise 2: network address

One host has the following address network 160.80.103.21/18 :

- Calculate broadcast/network address
- How many host can be in this subnet?

Subnetting/Supernetting

- It is useful to aggregate different subnet
 - otherwise routers should have information for every subnet in the whole Internet
- This tecnique is called "Supernetting"
 - Example: 1.2.3.0/25 and 1.2.3.128/25 can be aggregated in one supernet: 1.2.3.0/24
- Given a "supernet" we can split it in several subnets (subnetting):
 - Example: 1.2.3.0/24 can be divided in: 1.2.3.0/26, 1.2.3.64/26, 1.2.3.128/25

Subnetting: example

Given this address block 160.80.1.128/25:

Obtain four /27 subnets:

160.	80.1	.128/27
160.	80.1	.160/27
160.	80.1	.192/27
160.	80.1	.224/27

10100000.01010000.00000001.10000000 10100000.01010000.00000001.1010000 10100000.01010000.00000001.11000000 10100000.01010000.00000001.11100000

Obtain two/27 and one /26 subnets:

160.80.1.128/26 160.80.1.192/27 160.80.1.224/27 10100000.01010000.00000001.10000000 10100000.01010000.00000001.11000000 10100000.01010000.00000001.11100000

I subnet /25 \rightarrow 2 subnet /26 \rightarrow 4 subnet /27

Things getting more complicated with different size of subnetworks (e.g. 1 / 27, 2 /30, 3 /28)

Subnetting: sanity checks!

- 1. All the subnets have "all o" in the net part of the address?
- 2. Subnets do not overlaps?

Common Orrors

- You have 1.2.3.0/24: place a subnet /30 and a /27
- I.2.3.0/30 from I.2.3.0 to I.2.3.3 I.2.3.4/27 from I.2.3.4 to I.2.3.35

0000001 00000010 00000011 00000010

This is not a valid net address (host part is not "all 0")

Common Orrors

- You have 1.2.3.0/24: place a subnet /30 and a /27
- I.2.3.0/27 from I.2.3.0 to I.2.3.31 I.2.3.32/30 from I.2.3.32 to I.2.3.35

Correct!

If you start from the biggest subnet, addesses are correct (even if this is not the only correct solution!)

As well as: I60.80.64/26 (2^6 host) + I60.80.1.128/26 (2^6 host) **does not** form a I.2.3.64/25...think in binary!

Subnetting

Correct subnetting form an addressing tree:

• When subnetting, we can leave some unused space

It's clear that we can't combine 160.80.1.64/26 and 160.80.1.128/26 in a single /25 (even if they are consecutive)

Exercise 3:

You have this range of ip address 10.3.4.0/24 : Subnet the address space to have:

- One subnet /27
- Two subnet /30
- Three subnet /28

Routers

4.4

cisco ROUTERS

Cisco 7603

Cisco 2821

Cisco 2811

Cisco 2801

A \$2.000,000,0000,0000

Cisco 7609

distantia fallenti

....

Cisco 7604

Cisco 7201 . . .

Cisco 7204 VXR

Cisco 7606

..... - . how me 0000/0 Real Property lines.

0000 0

angua da angua angua

Cisco 7206 VXR

Cisco 7613

Routers

- Routers have 1 interface (and one IP address!) for each network they connect.
- Basically they:
 - Receive IP packets and read the destination address
 - Lookup in a Routing Table and decide which is the next hop (another router or the final node)
 - Send the packet on right interface the the next hop

Routers

0	4	8	16	19	31
Version	IHL	Type of Service	Total Length		
Identification Flags					nent Offset
Time T	o Live	Protocol	Header Checksum		
Source IP Address					
Destination IP Address					
	Options Padding				

- "basic" routers are interested basically only in destination address for what concern routing decision
- Not all routers are "basic": different kind of routing are possible (e.g. based on source address!).
- We will always refer to "basic" routers.

Routing Table Router I

Destination Address	Mask	Next HOP	Interface
160.80.1.0	255.255.255.0	local	etho
160.80.2.0	255.255.255.0	local	eth1

Forwarding Decision (Router1) 1/2

Destination Address		Mask		Next]	HOP	Int	erface
160.80.1.0		255.255.2	55.0	local		eth	0
160.80.2.0		255.255.255.0		local		eth	1
I 60.80.2.2 AND 255.255.255.0 = I 60.80.2.0	10 11: 10	100000 111111 100000	01010 1111111 01010	000 11 000	00000010 11111111 00000010)	00000010 00000000 00000000

160.80.2.0 is equal to Net address ? (160.80.1.0)

Go to the next entry of the routing table

NO

Forwarding Decision (Router1) 2/2

Destination Address		Mask		Next I	HOP	Int	terface
160.80.1.0		255.255.25	5.0	local		eth	.0
160.80.2.0		255.255.25	5.0	local		eth	1
160.80.2.2 AND 255.255.255.0 = 160.80.2.0	10 11: 10	100000 111111 100000	01010 1111111 01010	000 11 000	00000010 11111111 00000010)	00000010 00000000 00000000

160.80.2.0 is equal to Net address ? (160.80.2.0)

Forward to next hop (local forwarding) using interface eth l

PCI

PC2

Forwarding Decision (Router1)

Destination Address	Mask	Next HOP	Interface
160.80.1.0	255.255.255.0	local	etho
160.80.2.0	255.255.255.0	local	eth1
160.80.3.0	255.255.255.0	160.80.2.2	eth1

If behind R2 there are 100 different subnets, we need 100 other entries...

160.80.4.0	255.255.255.0	160.80.2.2	eth1
160.80.5.0	255.255.255.0	160.80.2.2	eth1
160.80.6.0	255.255.255.0	160.80.2.2	eth1
••••	•••	160.80.2.2	eth1

Can we aggregate these entries?

Forwarding Decision (Router1)

Destination Address	Mask	Next HOP	Interface
160.80.1.0	255.255.255.0	local	etho
160.80.2.0	255.255.255.0	local	eth1
160.80.0.0	255.255.0.0	160.80.2.2	eth1

Both the entries are verified....what happens???

Longest prefix match entry with the longer netmask wins!

This entry aggregates all the subnet from 160.80.3.0/24 to 160.80.255.0/24

Default gateway

• So this entry:

Destination Address	Mask	Next HOP	Interface
0.0.0.0	0.0.0.0	160.80.1.1	etho

- is always verified
- but used only when there are no other more specific route

Exercise 4:

• Where to route (i.e. next hop) a packet directed to 160.80.50.4, according to the following routing table?

Destination Address	Mask	Next HOP	Interface
160.80.1.0	255.255.255.0	local	etho
160.80.2.0	255.255.255.0	local	eth1
160.80.64.0	255.255.192.0	160.80.1.4	etho
160.80.0.0	255.255.192.0	160.80.1.4	etho
160.80.0.0	255.255.0.0	160.80.2.1	eth1
0.0.0.0	0.0.0.0	160.80.2.1	eth1

Are all the entry necessary?

Compact routing tables

	Destinat Address	tion	Mask	Next HOP	Interface		
	160.80.1.0	0	255.255.255.0	local	etho		
	160.80.2.	0	255.255.255.0	local	eth1		
	160.80.64	1.0	255.255.192.0	160.80.1.4	etho		
Ļ	160.80.0.0		255.255.192.0	160.80.1.4	etho		
L	160.80.0.0		255.255.0.0	160.80.2.1	eth1		
	0.0.0.0		0.0.0	160.80.2.1	eth1		
		Useless! (redundant with the default gateway entry)					
Can be "zipped" in							

100.80.0.0/T

Growth of the BGP Table - 1994 to Present

Exercise 5:

• Solve last exams (subnetting exercises)

Managing routing tables, linux case

How to?... IProute2 !!! 😳

The command: **ip route <options>**

Show the routing table: ip route show

ip route show 10.0.0/30 dev sl0 proto kernel scope link src 10.0.0.1 192.168.100.0/24 dev eth0 proto kernel scope link src 192.168.100.41 160.80.0.0/16 dev eth1 proto kernel scope link src 160.80.103.105 default via 160.80.80.1 dev eth1

Enabling packet forwarding in linux kernel (enabled in netkit):

echo I > /proc/sys/net/ipv4/ip_forward

Setting up static routes

- Local forwarding: routes automatically recorded in the routing table at the address configuration of a network interface...why?
- Static routes:

ip route add ADDRESS/MASK via NEXT_HOP

• Example:

ip route add 192.168.1.0/24 via 10.0.0.1

IPROUTE2 Summary

Comando	Significato
ip link set dev eth1 up	Abilita l'interfaccia eth1
ip address add 192.168.1.1/24 dev eth1	Assegna l'indirizzo 192.168.1.1 all'interfaccia di rete eth1. Imposta una regola della tabella di routing per il forwarding in locale dei pacchetti destinati ad host appartenent alla rete 192.168.1.0/24
ip route add 10.0.0/24 via 192.168.1.1	Imposta una rotta verso la sottorete 10.0.0/24
ip link show	Visualizza lo stato di tutte le interfacce
ip address show	Visualizza gli indirizzi associati alle varie interfacce della macchina
ip route show	Visualizza la tabella di routing