
PKI, X.509 CERTIFICATES AND
HTTPS WEBSERVERS

PRELIMINARIES
Public Key algorithms, digital certificates and PKI

Symmetric/Asymmetric cryptography

The encryption and decryption keys are the
same or can be directly derived from each
other. Both keys are kept secret.
Examples: 3DES, AES, Blowfish, RC4

Encryption/decryption keys are different
and it is computationally unfeasible to
derive them from each other.
The encryption key be distributed, the
other has to be kept secret.
For this reason it is also called Public Key
cryptography.
Examples: RSA, Diffie-Hellman, ElGamal

symmetric asymmetric

Public Key cryptography:
encryption/decryption

Alice Bob

Alice wants to send a message
M encrypted for Bob

Gets Bob’s public key Bpub
(Somehow) verifies Bpub authenticity
Encrypts M with Bpub! C = F(Bpub, M)

Decrypts C with Bob’s private key Bpriv
M = F(Bpriv, C)

Alice sends C to Bob

Note:
1)  Only Bob can decrypt C
2)  Nobody “can” derive Bpriv from Bpub
3)  This procedure can be inverted to implement a digital signature

Public Key cryptography:
digital signature

Alice Bob

Alice wants to sign a message
M so that Bob can verify its

authenticity

Gets his own private key Apriv
Computes a hash of the message H(M)
Signs H(M) with Apriv! S = F(Apriv, H(M))

Computes a hash of the message H(M)
Verify the signature by verifying the following:

H(M) = F(Apub, H(M)) ?

Alice sends (H(M), S) to Bob

Note:
1)  Only Alice can sign M
2)  Nobody can modify M and compute a valid signature S without knowing Apriv
3)  Alice can include a nonce (given by Bob) in the signature to avoid a third entity to reuse

the same signature for the same message M

RSA: key generation
1.  Extract two “big” prime numbers p e q (random, secret)
2.  Compute the RSA modulus: N = p ! q
3.  Compute !(N) = (p - 1)(q - 1) (Eulero’s function)
4.  Randomly generates the the number e: 1 < e < !(N)

relatively prime to !(N)
5.  Compute the number d: e " d = 1 mod !(N), or in other

words e is the inverse of d in the group !(N)
PUBLIC KEY: (N, e)
PRIVATE KEY: d
Must be kept secret: p, q, !(N), d

Note:
1) to derive d from e an attacker should compute e-1 in !(N)
2) !(N) is the number of integers less than or equal to n that are relatively prime to N

 2.1) to compute !(N) an attacker should know p and q (otherwise it’s unfeasible)
3) it is computationally unfeasible to factorize the product of two “big enough” prime numbers

RSA transformation is simply a modular exponentiation with
respectively the public private key

X

RSA tranformations

X emod N Y Y dmod N X
ENCRYPTION DECRYPTION

ciphertext

X X dmod N Y Y emod N X

SIGNATURE VERIFICATION

signed text

RSA with mathematica

!not exactly the real algorithm, but the concepts are the same!

decryption

encryption

public exponent

private key

RSA module

Diffie-Hellman Key exchange alogorithm

#x mod p

#y mod p

Public: #, p

Secret: x, y

K = (#y)x mod p K = (#x)y mod p

Random x Random y

GOAL: exchange a common secret
that only Alice and Bob can derive

COMMON KEY

Note:
1) Common secret number exchanged with an asymmetric algorithm
2) to compute K from (#x mod p) and (#y mod p) an attacker should be able to compute the
discrete logarithm x = log# (#x mod p) and y = log# (#y mod p)!
3) !which is computationally unfeasible for an attacker with “limited computational resources”

How does Alice obtain Bob’s public key?

"  Everything’s perfect, you believe that nobody can break the
public key algorithms if the numbers are “big enough”

"  How are the public keys distributed?
–  In a network with n nodes, n(n-1)/2 keys have to be distributed!
–  What if my private key is lost or stolen? Should I need to notify

all the remaining (n-1) nodes to revoke my public key?
–  Solution: centralized or opportunistic distribution! (obvious, the

public key don’t have to be kept secret!)
"  OK, the scalability issue is solved, but how can I be sure that

a public key is authentic? How can Alice get the public key of
Bob and be sure that it’s really his?

"  SOLUTION:
–  A trusted third party that issues some kind of proof that a public

key is really related to a given identity

"  A public key certificate is a data structure
that binds a public key (and therefor the
related private key) to the the identy of the
legitimate owner ! CERTID:{ID, PubID}

"  The binding between {ID, PubID} is granted
by a trusted certification authority that signs
CERTID

"  Provided that we have the CA’s public key,
we can verify the CA signature and therefor
verify the public key authenticity

EXAMPLE:
CA issues a public certificate for bob CERTbob
CERTbob contains:

 1) Pubbob
 2) CA identity CAid
 3) CA signature of CERTbob

Once I have the authentic Pubbob, I just need to
verify that the party I’m communicating with is
actually Bob (i.e.: it has the private key)

To do so, I perform a simple challenge/response
mechanism. I extract a nonce and challenge Bob
to sign this random number. Since the public key
is authentic, and Bob couldn’t know the random
number, only the real Bob can sign the nonce
correctly (and I can verify it)

Public Key Certificate
CA

bob

alice

CERTbob

CERTbob

- I trust CA and I have CA’s public key
- Verify CA signature CERTbob ! OK!
- Pubbob is authentic
- I can encrypt a message for Bob

Challenge/Response concept

bob alice

CERTbob

OK, the certificate is authentic!
Let’s see if you have the priv key
Sign this RAND!

RANDalice

Signed(RANDalice)

OK, I have Bob’s public key and RANDalice,
I can verify Bob’s signature

OK noprob!
(RANDalice)priv

"  A PKI consists of the protocols, the policies and the
cryptographic mechanism used to manage the
management of public key certificate
–  Creation, distribution, revocation, etc!

"  A PKI requires the definition of:
–  Certificate format
–  Relationship among CAs
–  Mechanisms and policies for issuing and revoking

certificate
–  Storage services

"  Typical certificate format: X.509

Public Key Infrastructure

X.509 format (high level)

Subject Public Key

Subject Identity

CA Identity

Version, Validity,

Serial Number, and others..

CA Siganture

X.509 certificate: real example

 Version: 3 (0x2)
 Serial Number:
 0c:6f:c8:59:57:fa:1f:5f:c9:67:2c:9f:e6:5c:db:e6
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, O=DigiCert Inc, OU=www.digicert.com, CN=DigiCert High Assurance CA-3
 Validity
 Not Before: Nov 15 00:00:00 2010 GMT
 Not After : Dec 2 23:59:59 2013 GMT
 Subject: C=US, ST=California, L=Palo Alto, O=Facebook, Inc., CN=www.facebook.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:c1:df:7d:63:41:bd:c4:e4:fa:65:33:13:78:d5: (... cut!) 0b:38:d6:82:00:23:dd:63:75
 Exponent: 65537 (0x10001)

 X509v3 extensions: (cut)
 X509v3 Subject Key Identifier:
 AA:57:4A:33:B6:EC:D5:6E:81:13:A6:36:5E:F4:7B:43:58:F3:8F:44
 X509v3 Subject Alternative Name:
 DNS:www.facebook.com, DNS:facebook.com
 X509v3 Key Usage: critical
 Digital Signature, Key Encipherment
 X509v3 Basic Constraints: critical
 CA:FALSE
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication

 Signature Algorithm: sha1WithRSAEncryption
 25:33:5e:90:3f:ad:02:fe:de:92:d2:9e:12:f7:ef:16:6a:8d: (... cut!) 8e:6f:a9:c3

X.509 certificate: real example

Certificate Signing Request
"  A certificate signing request (also CSR or certification request)

is a message sent from an applicant to a certificate authority
in order to apply for a digital identity certificate

"  The most common format for CSRs is the PKCS#10
specification

"  Operations:
–  the applicant first generates a key pair, keeping the private key

secret
–  the applicant generates a CSR contains information identifying

herself (X.509 subject field), optional X.509 extensions (e.g. key
usage: RSA authentication for web servers) and the public key
chosen by the applicant

–  The CSR may be accompanied by other credentials or proofs of
identity required by the certificate authority, and the certificate
authority may contact the applicant for further information

X509v3 extensions

"  An X.509 v3 certificate contains an
extension field that permits any number of
additional fields to be added to the
certificate

"  Certificate extensions provide a way of

adding information such as alternative
subject names and usage restrictions to
certificates

Some standard extensions
"  Authority Key Identifier

–  The authority key identifier extension provides a means of identifying the public key
corresponding to the private key used to sign a certificate

"  Subject Key Identifier
–  The subject key identifier extension provides a means of identifying certificates that

contain a particular public key
"  Key Usage

–  The key usage extension defines the purpose (e.g., encipherment, signature,
certificate signing) of the key contained in the certificate.

–  digitalSignature, nonRepudiation, contentCommitment, keyEncipherment ,
dataEncipherment, keyAgreement, keyCertSign, cRLSign, encipherOnly, decipherOnly

"  Subject Alternative Name
–  The subject alternative name extension allows identities to be bound to the subject of

the certificate. These identities may be included in addition to or in place of the
identity in the subject field of the certificate

"  Extended Key Usage
–  This extension indicates one or more purposes for which the certified public key may

be used, in addition to or in place of the basic purposes indicated in the key usage
extension.

–  TLS WWW server authentication, TLS WWW client authentication, Signing of
downloadable executable code, Email protection, Timestamping

See http://tools.ietf.org/html/rfc5280 for the complete list

Certificate Revocation List
"  Various circumstances may cause a certificate to become invalid prior to the

expiration of the validity period
–  change of name, change of association between subject and CA (e.g., an employee

terminates employment with an organization), and compromise or suspected
compromise of the corresponding private key.

"  Under such circumstances, the CA needs to revoke the certificate
"  CA periodically issuing a signed data structure called a certificate revocation

list (CRL)
"  A CRL is a time-stamped list identifying revoked certificates that is signed by

a CA or CRL issuer and made freely available in a public repository.
"  When a certificate-using system uses a certificate that system not only

checks the certificate signature and validity but also acquires a suitably
recent CRL and checks that the certificate serial number is not on that CRL.

"  Advantage: CRLs may be distributed by exactly the same means as
certificates themselves, namely, via untrusted servers and untrusted
communications.

"  One limitation: time granularity of revocation is limited to the CRL issue
period.

CRL example
Certificate Revocation List (CRL):!
 Version 1 (0x0)!
 Signature Algorithm: sha1WithRSAEncryption!
 Issuer: /C=US/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=Terms of use at https://www.verisign.com/rpa (c)04/CN=VeriSign
Class 3 Code Signing 2004 CA!
 Last Update: Apr 16 21:00:01 2013 GMT!
 Next Update: Apr 26 21:00:01 2013 GMT!
Revoked Certificates:!
 Serial Number: 0100E327CDC8D80E5F8C3D9D74D67BD8!
 Revocation Date: Apr 11 09:53:52 2006 GMT!
 Serial Number: 0100FCC2A0CD5DD0C6D36EB564C55E93!
 Revocation Date: Dec 10 18:07:34 2004 GMT!
 Serial Number: 010642D833388AE94906A89BDA5A135A!
 Revocation Date: May 22 20:25:03 2006 GMT!
 Serial Number: 0112135685183DDF2698DD70F54B5FFE!
 Revocation Date: Dec 23 17:35:14 2004 GMT!
 Serial Number: 012466647BD00FA2EBC4ACDB125A4B49!
 Revocation Date: Jul 27 18:21:05 2005 GMT!
 Serial Number: 01270B1F50C703546BFE14AB93692B9B!
 Revocation Date: Nov 14 11:47:04 2008 GMT!
 Serial Number: 012A6DC9A9D8E1F01BE424EE65B76977!
 Revocation Date: Jan 13 16:28:26 2005 GMT!
 Serial Number: 0134D37F26F1F593EF97280D56F56244!
 Revocation Date: Jul 17 18:43:18 2006 GMT!
 Serial Number: 013EC6686061D86E5A4D93564950B1C7!
 Revocation Date: Oct 27 22:28:50 2006 GMT!
 Serial Number: 013FA1A72104BDEF8B945AAD0625DEAF!

[CUT]!
 Signature Algorithm: sha1WithRSAEncryption!
 66:4d:80:b8:fc:4b:75:22:d1:6e:79:26:c0:d3:39:29:83:7a:!
 6a:bc:36:50:6c:1b:dc:79:f0:f3:a9:ec:16:86:6e:04:0d:34:!
 07:5e:06:59:6f:1d:b3:c2:b7:b4:66:ee:0c:23:3b:2e:00:0c:!
 8c:c6:2f:9e:67:4f:63:d2:8e:e3:e4:9b:51:7e:ca:55:9c:f2:!
 10:a2:07:dc:fd:c8:8c:f1:13:79:45:77:74:83:07:b5:c5:76:!
 54:fb:4f:19:79:73:25:5d:6d:ac:b4:3b:c3:53:d3:3f:a9:93:!
 b5:43:ca:d4:4f:96:86:78:95:36:7e:e5:06:fd:6d:d2:7d:c1:!
 68:6f:82:24:88:91:8b:10:bd:09:7b:a6:f9:73:22:01:ce:ad:!
 0a:90:63:13!

[CUT]!

OPENSSL X509 TUTORIAL
Let’s build our own certification authority

OpenSSL
"  OpenSSL is a cryptography toolkit implementing the Secure Sockets Layer

(SSL v2/v3) and Transport Layer Security (TLS v1) network protocols and
related cryptography standards required by them

–  www.openssl.org
"  Main component

–  Cryptography library: libcrypto!
–  SSL/TLS protocol library: libssl!
–  openssl program

"  The openssl program is a command line tool for using the various
cryptography functions of OpenSSL's crypto library from the shell. It can be
used for

–  Creation and management of private keys, public keys and parameters
–  Public key cryptographic operations
–  Creation of X.509 certificates, CSRs and CRLs
–  Calculation of Message Digests
–  Encryption and Decryption with Ciphers
–  SSL/TLS Client and Server Tests
–  Handling of S/MIME signed or encrypted mail
–  Time Stamp requests, generation and verification

Create a CA and sign certificate
request with openssl

"  Typical workflow
1.  Generate the RSA key pair for our CA
2.  Create a self-signed certificate for our CA
3.  Generate the RSA key pair for the web server
4.  Generate a CSR for the web server
5.  Sign the CSR with the CA private key

"  Very simple Lab-pki
–  Create the CA and issue the certificates (single level

certification ROOT_CA!certificate) with openssl from the
host machine

–  Create a netikit lab (Lab9-pki) with just one VM (with a TAP
10.0.0.1,10.0.0.2) that will be our test web server

–  Setup Apache2 for a HTTPS website

Create the CA keys

marlon@marlon-vmxbn:~/Labs$ mkdir cgrlCA!
marlon@marlon-vmxbn:~/Labs$ cd cgrlCA/!
marlon@marlon-vmxbn:~/Labs/cgrlCA$ echo -e "01\n" > serial!

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl genrsa -out ca.key 2048!
Generating RSA private key, 2048 bit long modulus!
..................................+++!
........+++!
e is 65537 (0x10001)!

Prepare our CA folder and the serial number file

Create the CA key pair

Generate the CA self signed
certificate

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl req -new -x509 -days
3650 -key ca.key -out ca.crt!
You are about to be asked to enter information that will be
incorporated!
into your certificate request.!
What you are about to enter is what is called a Distinguished Name
or a DN.!
There are quite a few fields but you can leave some blank!
For some fields there will be a default value,!
If you enter '.', the field will be left blank.!
-----!
Country Name (2 letter code) [AU]:IT!
State or Province Name (full name) [Some-State]:!
Locality Name (eg, city) []:Rome!
Organization Name (eg, company) [Internet Widgits Pty Ltd]:cgrlCA!
Organizational Unit Name (eg, section) []:!
Common Name (eg, YOUR name) []:cgrl-cert-authority !
Email Address []:ca@cgrl.edu!

This command will create a self signed certificate, i.e. a certificate where the
 issuer and the subject are the same entities

Let’s take a look at our first
certificate

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl x509 -in ca.crt -text -noout!
Certificate:!
 Data:!
 Version: 3 (0x2)!
 Serial Number:!
 b6:ef:85:6f:71:e5:68:bb!
 Signature Algorithm: sha1WithRSAEncryption!
 Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority

! ! ! ! ! ! ! ! ! ! ! !emailAddress=ca@cgrl.edu!
 Validity!
 Not Before: May 24 10:44:00 2012 GMT!
 Not After : May 22 10:44:00 2022 GMT!
 Subject: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/

! ! ! ! ! ! ! ! ! ! ! !emailAddress=ca@cgrl.edu!
 Subject Public Key Info:!
 Public Key Algorithm: rsaEncryption!
 Public-Key: (2048 bit)!
 Modulus:!
 00:a1:2c:f1:bf:a2:af:4a:3a:6e:f7:e7:13:b5:42:!
 32:4c:2c:d2:3b:0f:09:68:d6:67:6e:af:05:23:a8:!
 59:eb:ef:85:19:7c:75:18:! Cut!

Let’s make the web server keys
and CSR

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl genrsa -out server.key 1024!
Generating RSA private key, 1024 bit long modulus!
.++++++!
..++++++!
e is 65537 (0x10001)!
!

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl req -new -key server.key -out
server.csr!
!
Country Name (2 letter code) [AU]:IT!
State or Province Name (full name) [Some-State]:!
Locality Name (eg, city) []:Rome!
Organization Name (eg, company) [Internet Widgits Pty Ltd]:!
Organizational Unit Name (eg, section) []:!
Common Name (eg, YOUR name) []:testssl.cgrl.edu!
Email Address []:testssl@cgrl.edu!

Create the subject’s (i.e. our web server) key pair

Create the subject’s CSR. This certificate will be signed with the CA’s private key

This has to be
The web site FQDN

CSR signing
marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl x509 -req -in server.csr -out
server.crt -sha1 -CA ca.crt -CAkey ca.key -CAserial serial -days 3650!
Signature ok!
subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu!
Getting CA Private Key!

marlon@marlon-vmxbn:~/Labs/cgrlCA$ openssl x509 -in server.crt -text -noout!
Certificate:!
 Data:!
 Version: 1 (0x0)!
 Serial Number: 3 (0x3)!
 Signature Algorithm: sha1WithRSAEncryption!
 Issuer: C=IT, ST=Some-State, L=Rome, O=cgrlCA, CN=cgrl-cert-authority/

! ! ! ! ! ! ! ! ! ! ! !emailAddress=ca@cgrl.edu!
 Validity!
 Not Before: May 24 10:50:25 2012 GMT!
 Not After : May 22 10:50:25 2022 GMT!
 Subject: C=IT, ST=Some-State, L=Rome, O=Internet Widgits Pty Ltd,

! ! ! ! ! ! !CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu!
 Subject Public Key Info:!
 Public Key Algorithm: rsaEncryption!

This command will sign the CSR with the CA’s private key

Dump the signed certificate

Adding X509v3 extensions
When you sign a certificate set the following two options:
-extfile [file_name]
-extensions [section_name]!
!
In opnessl configuration file (in /etc/ssl/openssl.conf) we already have 4 standard section defined:
usr_cert, v3_req, v3_ca, crl_ext!
!
In addition, you can define extra sections
!
[section_name]!
Option1=valye!
OptionN=value!
!
See https://www.openssl.org/docs/apps/x509v3_config.html for extensions
!
!

!

marlon@marlon-vmxbn:~/Labs/CA$ openssl x509 -req -in server.csr -out
server.crt -sha1 -CA ca.crt -CAkey ca.key -CAserial serial -days 3650 -
extfile /etc/ssl/openssl.conf -extensions usr_cert!
Signature ok!
subject=/C=IT/ST=Some-State/L=Rome/O=Internet Widgits Pty Ltd/
CN=testssl.cgrl.edu/emailAddress=testssl@cgrl.edu!
Getting CA Private Key!

HTTPS SERVER WITH
APACHE2

How to protect our web server

Let’s configure Apache2
We are going to create a virtual host for the website “testssl.cgrl.edu” in the
netkit lab “Lab9-pki”

Configuration file, keys and certificate already in server:root/
Webserver media file and index.html in server:/var/www/testssl

Set-up everything properly before enabling the new site
"  Configuration file testssl.cgrl.edu goes into /etc/apache2/site-available
"  Keys and Certificate in the proper directory (see the conf file)

Run the following commands:

server# a2ensite testssl.cgrl.edu!
!
server# a2enmod ssl!
!
server# /etc/init.d/apache2 start!

Enable our HTTPS web site

Enable Apache2 SSL module

Start Apache2
(or “restart” if already up)

testssl.cgrl.edu config file
<IfModule mod_ssl.c>!
<VirtualHost _default_:443>!
DocumentRoot "/var/www/testssl"!
!
ServerName testssl.cgrl.edu:443!
ServerAdmin testssl@cgrl.edu!
!
SSLEngine On!
SSLCipherSuite HIGH:MEDIUM!
SSLProtocol all -SSLv2!
SSLCertificateFile /etc/apache2/ssl/server.crt!
SSLCertificateKeyFile /etc/apache2/ssl/server.key!
SSLCertificateChainFile /etc/apache2/ssl/ca.crt!
SSLCACertificateFile /etc/apache2/ssl/ca.crt!
!
<Directory "/var/www/testssl">!
 Options Indexes!
 AllowOverride None!
 Allow from from all!
 Order allow,den!
</Directory>!
</VirtualHost>!
</IfModule>!
!

Connect to the server

Note: append the following line to the file /etc/hosts on the host machine
testssl.cgrl.edu 10.0.0.2!

Unknown CA
(of course!)

You can also manually and permanently add
the certificate before trying to connect

TLS handshake
CLIENT

Server Hello
Client Hello SERVER

Certificate
Server Key Exchange

Certificate Request
Server Hello Done

Certificate
Client Key Exchange
Certificate Verify
Change Ciper Spec
Finished

Change Cipher Spec
Finished

Application Data

Optional and/or only
at session start-up

Mandatory

Start encryption

TLSv1 trace with our certificate

issuer

subject

HTTP plaintext auth over TLS
"  Safest way to authenticate via HTTP, better then digest auth
"  You first create a secure channel with the authenticated web server
"  You send authentication credential in clear (from the HTTP point of view)

but inside the secure (encrypted/authenticated) TLS channel
"  The test website already has the following password protected directory

server# htpasswd -c -m /etc/apache2/.htpasswd
007!
New password: !

To try it you need to grant access to a new user, for example: uid “007” password “jamesbond”

<Directory "/var/www/testssl/secret">!
 AuthType Basic!
 AuthName "Username and Password Required"!
 AuthUserFile /etc/apache2/.htpasswd!
 Require valid-user!
</Directory>!

Client authentication via X509
certificate

"  The client may authenticate itself with a X509 certificate
"  To do so we need to

1.  Configure the web server to force SSL client authentication

2.  Create a client certificate and configure the web browser to

use it (exported it in PCKS 12 format. NOTE: to use it with
firefox you need to enable SSL renegotiation. With (my)
chrome (v. 15.0.874.106 (Developer Build 107270 Linux)
Ubuntu 11.10) it’s already OK)

server# openssl genrsa -out client.key 1024!
server# openssl req -new -key client.key -out client.csr!
server# openssl x509 -req -in client.csr -out client.crt -sha1 -CA
ca.crt -CAkey ca.key -CAserial serial -days 3650!
server# openssl pkcs12 -export -in client.crt -inkey client.key -
out client.p12!

<Directory “/var/www/testssl/cert-required”>!
!SSLVerifyClient require!
!SSLVerifyDepth 1!

</Directory>!

