
NETFILTER AND IPTABLES
Packet filtering with Linux

Corso di Configurazione e
Gestione di Reti Locali

Marco Bonola
Lorenzo Bracciale

A.A. 2011/2012

NETFILTER
§  NETFILTER is a framework that provides hook

handling within the Linux kernel for intercepting and
manipulating network packets

§  A hook is an “entry point” within the Linux Kernel IP
(v4|v6) networking subsystem that allows packet
mangling operations
–  Packets traversing (incoming/outgoing/forwarded) the IP

stack are intercepted by these hooks, verified against a
given set of matching rules and processed as described
by an action configured by the user

§  5 built-in hooks:
– PRE_ROUTING, LOCAL_INPUT, FORWAD,

LOCAL_OUT, POST_ROUTING

NETFILTER basics
§  All packet intercepted by the hooks pass through a

sequence of built-in tables (queues) for processing.
Each of these queues is dedicated to a particular type
of packet activity and is controlled by an associated
packet transformation/filtering chain

§  4 built-in tables
–  Filter: packet filtering (accept, drop)
–  Nat: network address translation (snat, dnat, masquerade)
–  Mangle: modify the packet header (tos, ttl)
–  Raw: used mainly for configuring exemptions from

connection tracking in combination with the NOTRACK target

NETFILTER – The big picture

NETWORK NETWORK

forward

local output local input

pre-routing post-routing

local
process

1) Raw
2) Mangle
3) Nat

1) Mangle
2) Filter

1) Raw
2) Mangle
3) Nat
4) Filter

1) Mangle
2) Nat

1) Mangle
2) Filter

Route? Route?

Locally generated packets

NETWORK NETWORK

forward

local output local input

pre-routing post-routing

local
process

1) Raw
2) Mangle
3) Nat

1) Mangle
2) Filter

1) Raw
2) Mangle
3) Nat
4) Filter

1) Mangle
2) Nat

Route? Route?

1) Mangle
2) Filter

Forwarded packets

NETWORK NETWORK

forward

local output local input

pre-routing post-routing

local
process

1) Raw
2) Mangle
3) Nat

1) Mangle
2) Filter

1) Raw
2) Mangle
3) Nat
4) Filter

1) Mangle
2) Nat

Route? Route?

1) Mangle
2) Filter

Locally addressed packets

NETWORK NETWORK

forward

local output local input

pre-routing post-routing

local
process

1) Raw
2) Mangle
3) Nat

1) Mangle
2) Filter

1) Raw
2) Mangle
3) Nat
4) Filter

1) Mangle
2) Nat

Route? Route?

1) Mangle
2) Filter

NETFILTER basics
§  The matching rules and the actions (targets) are

implemented by different kernel modules and provides a
powerful packet filtering system

§  Common matches
–  Protocol, source/destination address or network, input/output

interface, source/destination TCP/UDP port

§  Common targets
–  ACCEPT, DROP, MASQUERADE, DNAT, SNAT, LOG

§  NETFILTER is extensible
–  You can register your custom HOOK
–  You can write your own “matching module” and “action module”
–  http://jengelh.medozas.de/documents/Netfilter_Modules.pdf

Connection tracking system
§  Within NETFILTER packets can be related to tracked

connections in four different so called states
–  NEW, ESTABLISHED, RELATED, INVALID

§  With the “state” match we can easily control who or
what is allowed to initiate new sessions. More later
on…

§  To load the conntrack module
–  modprobe ip_conntrack!

§  /proc/net/ip_conntrack gives a list of all the

current entries in your conntrack database

Connection tracking system
§  conntrack util provides a full featured userspace interface

to the netfilter connection tracking system that is intended to
replace the old /proc/net/ip_conntrack interface
–  Commands: dump, create, get, delete, update, event, flush,

stats…
–  man conntrack!
–  apt-get install contrack!

§  Two internal tables
–  conntrack: it contains a list of all currently tracked connections

through the system
–  expect: it is the table of expectations. Connection tracking

expectations are the mechanism used to "expect" RELATED
connections to existing ones. Expectations are generally used by
"connection tracking helpers" (sometimes called application level
gateways [ALGs]) for more complex protocols such as FTP, SIP,
H.323

NETFILTER conntrack

marlon@marlon-vmxbn:~$ sudo cat /proc/net/ip_conntrack!
[sudo] password for marlon: !
!
udp 17 28 src=172.16.166.156 dst=172.16.166.2 sport=43716 dport=53 src=172.16.166.2
dst=172.16.166.156 sport=53 dport=43716 mark=0 use=2!
!
tcp 6 431951 ESTABLISHED src=172.16.166.156 dst=172.16.166.2 sport=48680 dport=9999
src=172.16.166.2 dst=172.16.166.156 sport=9999 dport=48680 [ASSURED] mark=0 use=2!
!
udp 17 28 src=172.16.166.156 dst=172.16.166.2 sport=44936 dport=53 src=172.16.166.2
dst=172.16.166.156 sport=53 dport=44936 mark=0 use=2!
!
udp 17 19 src=172.16.166.156 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=172.16.166.156 sport=5353 dport=5353 mark=0 use=2!
!
tcp 6 431487 ESTABLISHED src=172.16.166.156 dst=172.16.166.1 sport=43733 dport=139
src=172.16.166.1 dst=172.16.166.156 sport=139 dport=43733 [ASSURED] mark=0 use=2!
!
udp 17 28 src=172.16.166.156 dst=172.16.166.2 sport=43581 dport=53 src=172.16.166.2
dst=172.16.166.156 sport=53 dport=43581 mark=0 use=2!
!

conntrack events

root@marlon-vmxbn:/home/marlon# conntrack --event!
[NEW] udp 17 30 src=172.16.166.156 dst=172.16.166.156 sport=47282 dport=4444 [UNREPLIED]
src=172.16.166.156 dst=172.16.166.156 sport=4444 dport=47282!
!
[DESTROY] udp 17 src=172.16.166.2 dst=172.16.166.156 sport=5353 dport=5353 [UNREPLIED]
src=172.16.166.156 dst=172.16.166.2 sport=5353 dport=5353!
!
[DESTROY] udp 17 src=172.16.166.156 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=172.16.166.156 sport=5353 dport=5353!
!
[DESTROY] udp 17 src=172.16.166.1 dst=224.0.0.251 sport=5353 dport=5353 [UNREPLIED]
src=224.0.0.251 dst=172.16.166.1 sport=5353 dport=5353!
!
[NEW] tcp 6 120 SYN_SENT src=172.16.166.156 dst=160.80.103.147 sport=45696 dport=80
[UNREPLIED] src=160.80.103.147 dst=172.16.166.156 sport=80 dport=45696!
!
[UPDATE] tcp 6 60 SYN_RECV src=172.16.166.156 dst=160.80.103.147 sport=45696 dport=80
src=160.80.103.147 dst=172.16.166.156 sport=80 dport=45696!
!
[UPDATE] tcp 6 432000 ESTABLISHED src=172.16.166.156 dst=160.80.103.147 sport=45696
dport=80 src=160.80.103.147 dst=172.16.166.156 sport=80 dport=45696 [ASSURED]!
!

State machines - TCP

Opening a connection

Closing a connection

State machines - UDP

Opening a connection

Closing a connection?

State machines - ICMP

State machines – ICMP related

ALG related state
§  protocols like FTP, IRC, and others carriy information within the

actual data payload of the packets, and hence requires special
connection tracking helpers to enable it to function correctly

§  For example, FTP first opens up a single connection that is called
the FTP control session and negotiate the opening of the data
session over a different socket

§  When a connection is done actively, the FTP client sends the
server a port and IP address to connect to. After this, the FTP
client opens up the port and the server connects to that specified
port from a random unprivileged port (>1024) and sends the data
over it

§  A special NETFILTER conntrack helper can read the FTP control
payload and read the “data port”

§  The new data socket will be considered as REALTED
§  Supported helpers

–  FTP, IRC,TFTP, SIP, etc..
–  https://home.regit.org/netfilter-en/secure-use-of-helpers/

IPTABLES
§  iptables is the frontend of NETFILTER
§  In other words, iptables is the userspace application

used to configure the NETFILTER tables
§  It is mainly used to add/remove rules to a chain

(mapping of NETFILETR hooks) within a table

§  General structure for adding remove a rule!
iptables <command> <chain> <table> <match> <target>!
iptables -A POSTROUTING -t nat -o eth0 -j MASQUERADE!

§  More later on…

IPTABLES TUTORIAL

Iptables
§  iptables is used to set up, maintain, and

inspect the tables of IPv4 packet filter rules in the
Linux kernel

§  Several different tables may be defined. Each
table contains a number of built-in chains and
may also contain user-defined chains

§  Each chain is a list of rules which can match a
set of packets

§  Each rule specifies what to do with a packet that
matches. This is called a target, which may be
a jump to a user-defined chain in the same
table

Iptables COMMANDS
§  Append, delete, insert, replace rules

–  iptables [-t table] {-A|-D} chain rule-specification!
–  iptables [-t table] -D chain rulenum!
–  iptables [-t table] -I chain [rulenum] rule-specification!
–  iptables [-t table] -R chain rulenum rule-specification!

!
§  List, flush rules

–  iptables [-t table] -S [chain [rulenum]]!
–  iptables [-t table] -{F|L} [chain [rulenum]] [options...]!

§  Create, delete, rename chains and set policy to a chain
–  iptables [-t table] -N chain!
–  iptables [-t table] -X [chain]!
–  iptables [-t table] -E old-chain-name new-chain-name!
–  iptables [-t table] -P chain target!

§  Where:

–  rule-specification = [matches...] [target]!
–  match = -m matchname [per-match-options]!
–  target = -j targetname [per-target-options]!

Iptables TARGETS
§  A firewall rule specifies criteria for a packet and a target. If the

packet does not match, the next rule in the chain is the examined;
§  if the packet does match, then the next rule is specified by the

value of the target (option -j), which can be the name of a user-
defined chain or one of the special (standard) values
–  ACCEPT means to let the packet through (no other rules will be

checked)
–  DROP means to drop the packet on the floor
–  QUEUE means to pass the packet to userspace
–  RETURN means stop traversing this chain and resume at the next

rule in the previous (calling) chain. If the end of a built-in chain is
reached or a rule in a built-in chain with target RETURN is matched,
the target specified by the chain policy determines the fate of the
packet

§  More targets with target extensions. More later on...

TABLES and CHAINS
§  filter: This is the default table (if no -t option is passed). It contains the built-in

chains INPUT (for packets destined to local sockets), FORWARD (for packets
being routed through the box), and OUTPUT (for locally-generated packets)

§  nat: This table is consulted when a packet that creates a new connection is
encountered. It consists of three built-ins: PREROUTING (for altering
packets as soon as they come in), OUTPUT (for altering locally-generated
packets before routing), and POSTROUTING (for altering packets as they are
about to go out)

§  mangle: This table is used for specialized packet alteration. Until kernel 2.4.17 it
had two built-in chains: PREROUTING (for altering incoming packets before
routing) and OUTPUT (for altering locally-generated packets before routing).
Since kernel 2.4.18, three other built-in chains are also supported: INPUT (for
packets coming into the box itself), FORWARD (for altering packets being routed
through the box), and POSTROUTING (for altering packets as they are about to
go out)

§  raw: This table is used mainly for configuring exemptions from connection
tracking in combination with the NOTRACK target. It registers at the netfilter
hooks with higher priority and is thus called before ip_conntrack, or any other
IP tables. It provides the following built-in chains: PREROUTING (for packets
arriving via any network interface) OUTPUT (for packets generated by local
processes)

TABLES and CHAINS

Basic match specification
The following parameters make up a match specification: (Iptables also support match extensions that
provides many more match specification. More later on…)
§  [!] -p, --protocol protocol: The protocol of the rule or of the packet to check. The specified

protocol can be one of tcp, udp, udplite, icmp, esp, ah, sctp or all, or it can be a numeric value,
representing one of these protocols or a different one. A protocol name from /etc/protocols is also
allowed. The number zero is equivalent to all. The character “!” inverts the test

§  [!] -s, --source address[/mask]: Source specification. Address can be either a network name,
a hostname, a network IP address (with /mask), or a plain IP address. Hostnames will be resolved once
only, before the rule is submitted to the kernel. Please note that specifying any name to be resolved
with a remote query such as DNS is a really bad idea. The character “!” inverts the test

§  [!] -d, --destination address[/mask]: Destination specification. See the description of the -s
(source)

§  [!] -i, --in-interface name: Name of an interface via which a packet was received (only for
packets entering the INPUT, FORWARD and PREROUTING chains). When the "!" argument is used
before the interface name, the sense is inverted. If the interface name ends in a "+", then any interface
which begins with this name will match. If this option is omitted, any interface name will match.

§  [!] -o, --out-interface name: Name of an interface via which a packet is going to be sent (for
packets entering the FORWARD, OUTPUT and POSTROUTING chains). When the "!" argument is used
before the interface name, the sense is inverted. If the interface name ends in a "+", then any interface
which begins with this name will match. If this option is omitted, any interface name will match

§  [!] -f, --fragment: This means that the rule only refers to second and further fragments of
fragmented packets. Since there is no way to tell the source or destination ports of such a packet (or
ICMP type), such a packet will not match any rules which specify them. When the "!" argument precedes
the "-f" flag, the rule will only match head fragments, or unfragmented packets

Reference LAB – Lab5-nf

r2 routing table

destination next hop device

10.0.0.0/24 1.0.0.1 eth0

8.0.0.0/24 1.0.0.1 eth0

1.0.0.0/24 * eth0

default host-machine eth1

Strange…
Just to make
things work,
for now…

running servers

server1, server2, serverLan (*) ssh, www

router, r2 (*) ssh

pc1 www

(*) set root pwd

INTERNET

LAN
10.0.0.0/24

pc1

server1
8.0.0.2

pc2

DMZ

server2
8.0.0.3

router
(FW + DHCP)

eth1
8.0.0.1

eth2
10.0.0.1

eth0
1.0.0.1

serverLan
00:00:00:00:00:aa

10.0.0.2
r2

eth0
1.0.0.2

eth1
(TAP)

Our first simple commands
§  Show rules in the filter table with numeric output and rule numbers

router# iptables -L -n --line-numbers!

§  Flush rules in the filter table
router# iptables -F !

§  Set the policy for the FORWARD chain in the filter table
router# iptables -P FORWARD DROP !
!

§  Allow all packets coming from LAN toward anywere
router# iptables -A FORWARD -i eth2 -j ACCEPT!

§  Allow all packets from the Internet to DMZ
!router# iptables -A FORWARD -i eth0 -o eth1 -j ACCEPT!

§  Allow packets from server1 to LAN

!router# iptables -A FORWARD -o eth2 -s 8.0.0.2 -i eth1 -j ACCEPT
!
!

Rule order is important…
§  DROP all incoming packets from LAN except from

serverLAN
router# iptables -A INPUT -s 10.0.0.0/24 -i eth2 -j DROP!
router# iptables -A INPUT -s 10.0.0.2 -i eth2 -j ACCEPT!

!
It won’t work! Why?
Because the second rule is appended and then a packet
from 10.0.0.2 will be dropped anyway as it will match the
first rule

§  Solutions:

–  Change the order J
–  Insert the second rule instead of appending it
–  set DROP as default policy for the INPUT chain and

append the 1 ACCEPT rule

Rule order is important…
§  DROP all incoming packets from LAN except from

serverLAN
router# iptables -A INPUT -s 10.0.0.0/24 -i eth2 -j DROP!
router# iptables -A INPUT -s 10.0.0.2 -i eth2 -j ACCEPT!

!
It won’t work! Why?
Because the second rule is appended and then a packet
from 10.0.0.2 will be dropped anyway as it will match the
first rule

§  Solutions:

–  Change the order J
–  Insert the second rule instead of appending it
–  set DROP as default policy for the INPUT chain and

append the 1 ACCEPT rule

Save and restore
§  To save a currently running iptables configuration

–  iptables-save > firewall.conf!
§  To restore a saved iptables configuration

–  iptables-restore < firewall.conf!
§  To automatically restore a configuration at startup

use /etc/rc.local

§  Debian based distros have a tool named iptables-
presistent that provides a iptables service script
–  apt-get install iptables-persistent!
–  /etc/init.d/iptables-persistent start |
stop | save | reload!

–  Configuration in /etc/iptables/rules.v{4,6}!

Match extensions
§  iptables can use extended packet matching modules

–  implicitly loaded when -p or --protocol is specified
–  or with -m or --match options, followed by the matching

module name
§  After an extended match is specified, various extra

command line options become available, depending
on the specific module
–  iptables -A INPUT -p tcp --sport 9000 -j DROP
–  iptables -A INPUT -m addrtype --dst-type MULTICAST -j

DROP
§  You can specify multiple extended match modules in

one line, and you can use the -h or --help options
after the module has been specified to receive help
specific to that module

§  Man iptables for all match extensions

TCP and UDP match extensions
§  -p tcp: matches IP packets with protocol=TCP

–  --sport: matches the TCP source port
–  --dport: matches the TCP destination port
–  --tcp-flags: matches the TCP header flags…
–  --syn: matches packets with the SYN flag set

Example:
iptables -A INPUT -p tcp --dport 80 -j DROP!

§  -p udp: matches IP packets with protocol=UDP

–  --sport: matches the UDP source port
–  --dport: matches the UDP destination port

Example:
iptables -A OUTPUT -p udp --dport 53 -j DROP!

Example: forward SSH traffic
Allow forwarding of SSH traffic from clients
inside the LAN and servers on the internet

router# iptables -A FORWARD -i eth2 -p tcp --dport
22 -j ACCEPT!
!
router# iptables -A FORWARD -i eth0 -p tcp --sport
22 -j ACCEPT!

We would like to accept traffic from the internet
with source port 22 only if related to a
previously established connection from LAN…

State match extensions
This module, when combined with connection tracking, allows access to the
connection tracking state for this packet

-m state [!] --state state!
!
Where state is a comma separated list of the connection states to match.
§  INVALID meaning that the packet could not be identified for some reason

which includes running out of memory and ICMP errors which don't
correspond to any known connection

§  ESTABLISHED meaning that the packet is associated with a connection
which has seen packets in both directions

§  NEW meaning that the packet has started a new connection, or otherwise
associated with a connection which has not seen packets in both directions

§  RELATED meaning that the packet is starting a new connection, but is
associated with an existing connection, such as an FTP data transfer, or an
ICMP error

-m ctstate provides additional features. Man iptables for more…

Examples: state match
§  Forward traffic between LAN and INTERNET if initiated from LAN

router# iptables -P FORWARD DROP!
router# iptables -A FORWARD -i eth2 -m state --state
NEW, ESTABLISHED -j ACCEPT!
router# iptables -A FORWARD -i eth0 -m state --state
ESTABLISHED -j ACCEPT

§  Accept incoming/outgoing traffic only if related to locally initiated
traffic. Accepts only incoming connections ONLY for SSH (std port)

router# iptables -P INPUT DROP!
router# iptables -P OUTPUT DROP!
router# iptables -A OUTPUT -m state --state NEW,
ESTABLISHED -j ACCEPT!
router# iptables -A INPUT -m state --state
ESTABLISHED -j ACCEPT
router# iptables -A INPUT -p tcp --dport 22 -m state
--state NEW -j ACCEPT!

Example: save and restore

§  With respect to the previous slide
– save the iptables configuration somewere
– configure router VM to restore this

configuration at startup
–  reboot the VM
– verify that the iptables configuration still works

Multiport match

§  Match multiple destination ports (e.g. tcp)
–  -p tcp -m multiport --dports port1,port2,…,portn

§  Match multiple source ports (e.g. udp)
–  -p udp -m multiport --sports port1,port2,…,portn

§  Match multiple ports (both src and dst) (tcp)
–  -p tcp -m multiport --ports port1,portb:portc

Target extensions
§  iptables can use extended target modules
§  Target modules are automatically loaded when -j

option is specified
§  Common targets

–  DNAT, SNAT, MASQUERADE, REDIRECT
•  Network address translation. later on….

–  LOG
•  Log the matching packets. See /var/log/syslog/ or run dmesg!
•  --log-prefix: specify a prefix string

–  MARK
•  Internally set a mark to the matching packet
•  -j MARK --set-mark <u32> #set mark target
•  -m mark --mark <u32> #mark match

–  REJECT
•  Drop a matching packet and send a specific error message

Example: mark and log
As (a stupid) example, let’s mark all TCP syn and all
“new” UDP packets locally addressed and log them
(first flush everything and set policies to ACCEPT)
!
router# iptables -F && iptables -P INPUT ACCEPT &&
iptables -P OUTPUT ACCEPT && iptables -P FORWARD
ACCEPT !
!
router# iptables -A INPUT -m state --state NEW -j
MARK --set-mark 1234!
!
router# iptables -A INPUT -m mark --mark 1234 –j LOG
--log-prefix “test-log ”!

User defined chains
It is possible to define custom chains. It is useful to:
§  keep a big configuration in order
§  reduce the number of rules
§  change default policies (NO POLICY for custom chains. Use the LAST rule)
!
To define a custom CHAIN:
iptables -N NEW_CHAIN!
!
Add a rule to a custom chain:
iptables -A NEW_CHAIN -j LOG!
!
To pass a packet to a custom chain (e.g. from the INPUT chain, filter table,
source address 10.0.0.0/24):
iptables -A INPUT -s 10.0.0.0/24 -j NEW_CHAIN!
!
To destroy a custom chain (be sure there are no rules pointing to this chain):
iptables -X NEW_CHAIN!
!
!

Example of a MANGLE table target
Set TOS for ssh (standard port) to 1, udp traffic to 2, the remaining tcp
traffic to 2 for packets sent through eth0 (both forwarded and locally
generated)
!
first flush everithing and set all policies to ACCEPT #!
router# iptables -t MANGLE -A POSTROUTING -o eth0 -p tcp -
j TOS --set-tos 3!
router# iptables -t MANGLE -A POSTROUTING -o eth0 -p tcp
--dport 22 -j TOS --set-tos 1!
router# iptables -t MANGLE -A POSTROUTING -o eth0 -p udp -
j TOS --set-tos 2!
!
!
TEST it with tcpdump on r2

What is the difference if you want to do that only for packets forwarded from
LAN ?
And only for packets locally generated?

Homework: firewall spec
1) Forward traffic between DMZ and the INTERNET
2) Forward traffic between LAN and DMZ only if initiated from
LAN
3) Forward ssh, www and dns traffic between LAN and
INTERNET only if initiated from LAN
4) Drop all traffic initiated from INTERNET to router except ssh
and icmp (only ping)
5) Allow traffic from router to anywhere
6) DROP all traffic from LAN to router except ssh, dhcp, icmp,
udp destination port 666 and TCP ports 10000, 20000, 30000
7) LOG all “accepted” packets

8) Save the script in a file so that it will work restored on any
“fulshed” router

!
!

NETWORK ADDRESS
TRANSLATION WITH NETFILTER

Network Address Translation
§  NAT is the process of changing the the IP header

–  E.g.: a routed packet is intercepted, the IP source address is changed
and the IP and L4 checksum in updated

–  RFC 2663 defines it as basic NAT or one to one NAT
§  Since a static one-to-one NAT can’t be exploited by an entire

address space (e.g.: a 10.0.0.0/24 LAN behind NAT), the L4 ports
can be changed to avoid ambiguity in the response packets
–  RFC 2663 also defines a “Network Address and Port

Translation” (NAPT)
–  It is also referred to as PAT, Masquerading, Many to One NAT etc…

§  NAPT technique allows to successfully forward packets addressed
to the masqueraded network (e.g.: the LAN behind the NAT) only if
related to a flow originated from it
–  For flows originated outside the masqueraded network, a different

method is used
–  Static NAT (or Port Forwarding) uses static binding between

(addre:porte) <-> (addri:porti)
§  To much confusion! From now on, we’ll use “NAT” for the general IP/

L4 translation

NAT basic mechanism -
masquerading

LAN host NAT server
ipH, ipS, iphc, tcpsport, tcpdport, tcpcs

ipNAT, ipS, iphc*, tcpNAT, tcpdport, tcpcs* pick up free tcpNAT
and store the binding

ipH, tcpsport : ipNAT tcpNAT

ipS, ipNAT, iphc, tcpdport, tcpNAT, tcpcs

ipH, ipS, iphc*, tcpsport, tcpdport, tcpcs*

retrieve ipH, tcpsport
from ipNAT, tcpsportNAT :

ipH: host private IP address
ipS: server public IP address
ipNAT: NAT public IP address
tcpsport: host application source port
tcpdport: server listening port
tcpNAT: random port picked up by NAT
iphc, tcpcs: protocol checksums

NAT basic mechanism
port forwarding

LAN host NAT client

Statically configured with
ipH, tcpsport : ipNAT tcpNAT

ipC, ipNAT, iphc, tcpsport, tcpNAT, tcpcs

ipC, ipS, iphc*, tcpsport, tcpdport, tcpcs* retrieve ipS, tcpdport
from ipNAT, tcpNAT

ipS: server private IP address
ipC: client IP address
IPNAT: NAT public IP address
tcpsport: client application source port
tcpdport: server listening port
tcpNAT: port forwarded by NAT
iphc, tcpcs: protocol checksums

More about NAT nomenclature
§  NAT classification is really confusing among

vendors:
–  CISCO

•  Static, dynamic
–  IBM

•  Static, dynamic, masquerading
–  LINUX (NETFILTER)

•  DNAT, SNAT, MASQUERADE, REDIRECT
–  JUNIPER

•  Full cone, symmetric
–  BSD

•  No explicitly distinct types

§  From now on we’ll use the Linux nomenclature

Address:Port binding strategy
calssification

§  RFC 3849 (Simple Traversal of UDP over NATs, obsoleted by RFC
5389) defines 4 different strategies for selecting the binding between
(addre:porte) <-> (addri:porti)
§  Full-cone NAT

§  Any external host can send packets to iAddr:iPort by sending packets to
eAddr:ePort

§  Restricted cone NAT
§  An external host (hAddr:any) can send packets to iAddr:iPort by sending packets

to eAddr:ePort only if iAddr:iPort has previously sent a packet to hAddr:any
§  Port-restricted cone NAT

§  An external host (hAddr:hPort) can send packets to iAddr:iPort by sending packets to
eAddr:ePort only if iAddr:iPort has previously sent a packet to hAddr:hPort

§  Symmetric NAT
§  Only an external host that receives a packet from an internal host can send a packet

back

§  As described in RFC 4787, this classification is inadequate to
describe real NAT implementation (as they can be a mix of the
above techniques. E.g: NETFILTER DNAT is fullcone,
MASQUERADE is symmetric)

§  Some NAT traversal protocols simply make the distinction
Symmetric/Asymmetric NAT

Why NATs are bad (1)

§  NATs are bad for servers in masqueraded
LAN

§  OBVIOUS! Without the NAT enabled router
taking ad-hoc static port forwarding, how can a
client reach such servers?

§  Sometimes we can’t control the NAT enables
router
§  E.g: FASTWEB home customers

§  Even with total control over the NAT and static port
forwarding, what if I have multiple (e.g. HTTP)
severs?
§  Use different ports
§  How do I advert this?

Why NATs are bad (2)
§  NATs are bad for clients too
§  Example: FTP (textual protocol over TCP) ACTIVE MODE
§  Other examples: RTP/RTCP, SIP, p2p protocols…

0. Connection from rand port and authentication
1.  Client selects a port (rand+1) for receiving data

traffic (PORT command)
2.  Server acknowledges it
3.  Server starts the connection to client:1027
4.  Client acknowledges the SYN

Problems with a NAT in the middle:
–  The server contacts the client at the address it

sees in the CMD connection (i.e: the public
address of the NAT) and PORT in the FTP msg

–  CMD and DATA ports are random
–  How can the NAT correctly forward the DATA

connection to the Client?
–  Even if the client port were fixed, what would

happens with multiple client behind the NAT? FTP active

Why NATs are bad (3)
§  NATs are bad for secure end to end encapsulation with IPSEC
§  If AH (Authentication Header) is used, the NAT destroys the

end to end cryptographic integrity computed over the whole IP
packet
–  The NAT would change the source IP address
–  The NAT couldn’t re-compute the message authentication code

because he doesn’t know the secret (as it should be…)
§  Even with ESP only, what if multiple hosts selects the same

SPIs?
–  To revert the binding, the NAT can use the couple (IP, SPI)
–  SPIs are picked up independently by the two parties

§  NAT implementations are (not rarely) able to work only with IP
+{TCP|UDP}

§  NAT binding timeout

§  Other motivations (described in RFC 3715)

Why NATs are bad (3)

Why NATs are bad (3)

What is NAT traversal?
§  NAT traversal is a mechanisms to solve the

problems introduced by NATs
§  It can be implemented as:

– A protocol “patch” e.g: FTP passive
•  In FTP passive the client sends the first packet to allow

the server to find out the DATA port
– An ALG (application layer gateway) that inspects

and changes the application protocols message
– An integrated “helper” protocol used at set up

time (Internet Connectivity Establishment (ICE),
TURN, STUN)

– Tunneling mechanism (e.g.: UDP encapsulation)

What are NATs good for?

1.  IPv4 address exhaustion
–  NAT allows several hosts in a LAN to share

the Internet connection through the same
public IP

2.  Implicit security
–  A host in a LAN behind NAT can’t be reach

from outside…
–  …unless explicit port forwarding is

configured

Lab5-nf-bis

r2 routing table

destination next hop device

8.0.0.0/24 1.0.0.1 eth0

1.0.0.0/24 * eth0

2.0.0.0/24 * eth1

default host-machine TAP

running servers

server1, server2, serverLan,
serverLan2

ssh, www

router, r2, r3 ssh

INTERNET

LAN
10.0.0.0/24

pc1

server1
8.0.0.2 DMZ

server2
8.0.0.3

router
(FW + DHCP)

eth1
8.0.0.1

eth2
10.0.0.1

eth0
1.0.0.1serverLan

00:00:00:00:00:aa
10.0.0.2

r2
eth0

1.0.0.2

eth1
(TAP)

LAN2
192.168.0.0/24

r3

serverLan2
00:00:00:00:00:bb

10.0.0.3

eth2
2.0.0.1

eth0
2.0.0.2

eth1 192.168.0.1

pc2
192.168.0.100

SNAT
§  This target is used to do Source Network Address Translation, which

means that this target will rewrite the Source IP address in the IP
header of the packet and the source L4 port (if needed)

§  The SNAT target is only valid within the nat table, within the
POSTROUTING chain

§  Only the first packet in a connection is mangled by SNAT, and after
that all future packets using the same connection will also be
SNATted

§  Syntax
–  -j SNAT !
–  --to-source ipaddr[-ipaddr][:port[-port]]!
–  --random !
–  --persistent!
–  Port range only valid with [-p tcp|udp] option

§  Default behaviour: L4 ports are not modified, if they can be left
unchanged (i.e.: if the specific port has not been already allocated
for another binding)

MASQUERADE
§  The MASQUERADE target is used basically the same as the SNAT

target, but it does not require any --to-source option
§  MASQUERADE target was made to work with, for example, dial-up

connections, or DHCP connections, which gets dynamic IP
addresses when connecting to the network in question

§  If you have a static IP connection, you should instead use the SNAT
target

§  Source address is dynamically grabbed from the output interface (it
depends on the IP forwarding process)

§  This target is only valid in the nat table, in the POSTROUTING
chain

§  Syntax
–  -j MASQUERADE!
–  --to-ports port[-port]!
–  --random!
–  Port range only valid with [-p tcp|udp] option

MASQUERADE in Lab5-nf-bis
Configure router to MASQUERADE traffic going out from eth0
(r3 already run the following iptables command in r3.startup)

router# iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE!

Since in the reference LAB eth0 is configured statically, it would have been equivalent (the manual
says it’s actually better for performances) to use SNAT from 1.0.0.1 (homework: verify it!)!
router# iptables -t nat -A POSTROUTING -o eth0 -j SNAT --to-source 1.0.0.1!

DNAT
§  OK, host in LAN are now masqueraded and they

can “access the INTERNET” sharing the public IP
address of router

§  What if I tried to reach the http server on
ServerLan through the public IP on router?
–  I would get a TCP reset (it’s not a rule…)

§  Why?
–  Because router doesn’t have a binding between

1.0.0.1:80 ßà 10.0.0.2:80 and router thinks the TCP
SYN received is for himself…

§  What can I do?
–  Port forwarding (using NETFILTER DNAT)

DNAT
§  This target is used to do Destination Network Address

Translation, which means that it is used to rewrite the
Destination IP address of a packet and the destination L4 port
(if required)

§  Note that the DNAT target is only available within the
PREROUTING and OUTPUT chains in the nat table

§  Syntax
–  -j DNAT !
–  --to-destination [ipaddr][-ipaddr][:port[-
port]]!

–  --random !
–  --persistent!
–  Port range only valid with [-p tcp|udp] option

DNAT in Lab5-nf-bis
Let’s make the http server on serverLan available through router public address and port 80
!
router# iptables -t nat -A PREROUTING -d 1.0.0.1 -p tcp --dport 80 -j
DNAT --to-destination 10.0.0.2:80!
!
Try from pc2
pc2# links 1.0.0.1!

What about HTTP server on serverLan2?
We use another port (e.g: 8080)!
!
router# iptables -t nat -A PREROUTING -d 1.0.0.1 -p tcp --dport 8080 -
j DNAT --to-destination 10.0.0.3:80!
!
Try from pc2
pc2# links 1.0.0.1:8080!
!
!
Note the double NAT from pc2 to serverLan[2]!
!
!

DNAT for hosts in the same LAN

What if pc1 tries to connect to serverLan through
1.0.0.1:80?!

–  It won’t work!
What happens?

–  I have a TCP reset from 10.0.0.100 to 10.0.0.2
Huh? Really?
!
!

DNAT for hosts in the same LAN
What happened?
(let’s assume all mac:ip already in ARP cache)
 pc1

10.0.0.100
serverLan
10.0.0.2

router
1.0.0.1

nc 1.0.0.1 80!
1.0.0.1? Default GW!

TCP SYN

1.0.0.1:80?!
DNAT to 10.0.0.2:80!

TCP SYN

TCP syn port 80 from 10.0.0.100?!
OK. Let’s ack it!!

10.0.0.100? Direct forwarding!

TCP syn ack

(ip.src=10.0.0.100, ip.dst=1.0.0.1)

(src=10.0.0.100, ip.dst=10.0.0.2)

(src=10.0.0.2, ip.dst=10.0.0.100)
syn ack from 10.0.0.2?!
Huh? Unsolicited!!!!
Send a TCP reset!

Reset?!
OK, if you say so…!

DNAT for hosts in the same LAN

Solution
MASQUERADE packets to 10.0.0.2:80 from 10.0.0.0/24

!
router# iptables -t nat -A POSTROUTING -s 10.0.0.0/24 -d
10.0.0.2 -p tcp --dport 80 -j MASQUERADE!

Load balancing with DNAT
§  GOAL: balance the connections to 1.0.0.1:80 equally between

serverLan and serverLan2
§  statistics match

–  --mode nth --every n: matches every n packets

router# iptables -t nat -A PREROUTING -d 1.0.0.1
-p tcp --dport 80 -m statistic --mode nth --
every 2 -j DNAT --to-destination 10.0.0.2:80!
!
router# iptables -t nat -A PREROUTING -d 1.0.0.1
-p tcp --dport 80 -m statistic --mode nth --
every 1 -j DNAT --to-destination 10.0.0.3:80!
!
!

REDIRECT
§  This target is used to redirect packets and streams to the machine itself by changing the

destination IP to the primary address of the incoming interface (locally-generated
packets are mapped to the 127.0.0.1 address)

§  Example: REDIRECT all packets destined for the HTTP ports to an HTTP proxy like squid
§  REDIRECT target is only valid within the PREROUTING and OUTPUT chains of the nat

table
§  Syntax

–  -j REDIRECT
–  --to-ports port[-port]
–  --random
–  If --to-port is missing, the destination port is left unchanged

§  Rule example (assuming there is a local proxy server listening on 8080)
–  iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT --to-ports

8080 !!

§  Test: redirect http to server2 and server1 to a local server web
–  Run apache on router and add the following rule (on router)
–  router# iptables -t nat -A PREROUTING -p tcp --dport 80 -j REDIRECT
–  Run the following command on (for example) pc2

•  pc2# links 8.0.0.2

NETFILTER: SOME ADVANCED
FEATURES

Limit matches
§  This module matches at a limited rate using a token bucket filter
§  A rule using this extension will match until this limit is reached (unless the '!'

flag is used)
§  Can be used in combination with other modules
§  Syntax

–  -m limit
–  --limit rate[/second|/minute|/hour|/day]
–  --limit-burst number This value indicates that the limit/minute will be enforced only after

the total number of connection have reached the limit-burst level (in other word is the
token-bucket size)

§  Hashlimit provides extra features… (man iptables)
§  Example: limit incoming http connections to 6 per minute after a maximum

burst of 3 is reached (stupid numbers, but it’s easy to check if it’s working)

server1# iptables -P INPUT ACCEPT!
!
server1# iptables -A INPUT -p tcp --dport 80 --syn -m
limit --limit 6/minute --limit-burst 3 -j ACCEPT!
!
server1# iptables -A INPUT -p tcp --syn -j DROP

Setting transfer quotas
§  Set the maximum number of bytes allowed for a given match
§  Ex: subscription bytes limit
§  Explicitly delete and insert the rule to reset quotas (e.g.: use a cron job)
§  Need to explicitly remove and re-insert the rule to reset quotas. (warning: no way to save the status)

Example: limit monthly quota to 2 GB
!
#configure iptables with!
iptables -P INPUT DROP!
iptables -A INPUT -m mark --mark 12 -j ACCEPT!
!
#In file /root/quota.sh (make it executable)!
iptables -D INPUT -m quota --quota 2000000000 -j MARK --set-mark 12!
iptables -I INPUT -m quota --quota 2000000000 -j MARK --set-mark 12!
!
#In file /etc/crontab add the following line !
@monlty root /root/quota.sh!
!
#start crontab!
/etc/init.d/cron start!
!
Example2: limit the quota 1 MB per minute (stupid numbers just to test it! Server1 has 2 files: small.jpg,
medium and big.jpg)!
#same as before but set quota to 1000000 and instead the wildcard @monthly use
the following line!
!
* * * * * root/root/quota.sh!

Time based rules
§  We can match rules based on the time of day and the day of the week using

the time module
§  This could be used to limit staff web usage to lunch-times, to take each of a

set of mirrored web servers out of action for automated backups or system
maintenance, etc

§  Example: allows web access during lunch hours
!
!
router# iptables -A FORWARD -p tcp -m multiport --dport
http,https -o eth0 -i eth2 -m time --timestart 12:30 --
timestop 13:30 --days Mon,Tue,Wed,Thu,Fri -j ACCEPT!

String match
§  This match identify a packet containing a string anywhere in it’s payload
§  Syntax

–  -m string
–  --string “string”
–  --from offset
–  --to offset
–  --algo algorithm {bm|kmp}

Example: LOG all HTTP GETs from LAN and DROP all ones containing “sex” in the URL
NOTE: turn on masquerading

router# iptables -P FORWARD ACCEPT && iptables -F !

router# iptables -N HTTP_GET!
router# iptables -A HTTP_GET -j LOG --log-prefix “HTTP GET ”!
router# iptables -A HTTP_GET -m string --string --algo bm “sex” -j
DROP!

router# iptables -A FORWARD -i eth2 -m string --algo bm --string “GET
” --to 4 -j HTTP_GET

Maintaining a list of recent matches
§  Goal: match packet sent by an IP address that has recently done something wrong

–  Example: drop all packets sent by a user that has previously tried to contact local port 30000

§  The recent match one can dynamically create a list of IP addresses that match a rule and
then match against these IPs in different ways later

§  To add an IP source address of a packet that matches some rule use the following syntax
–  -m recent --name “list_name” --set
–  Example: put IP source address that contacts local port 30000 tcp in the list “bad_guys”

•  iptables -A INPUT -p tcp -dport 30000 -m recent --name bad_guys --set -j DROP!

§  To match the IP source address in bad_guys list use
–  -m recent --name bad_guys --rcheck --seconds n
–  After n seconds, the address is removed from the list
–  Example: check if a packet source address is in bad_guys list and if so don’t forward it

•  iptables -A FORWARD -m recent --name bad_guys --rcheck --seconds 10 -j DROP!

§  Homework: combine recent and limit match to drop (for 2 minutes) all traffic generated by
an IP address inside the LAN that has tried to connect remote ssh servers more then 10
times per minute

Packet owner match
§  The owner match extension is used to match packets based on the user id or group id that

“sends the packet”
–  i.e.: the uid or gid of the application that called the send()

§  Syntax
–  -m owner --uid-owner root
–  -m owner --gid-owner net

§  In older kernels it was possible to match also the PID of the process generating the
outgoing packets

–  If you want to keep track of different applications use different users/groups per application
•  “apache” user, “ssh” user, etc etc..

Example
Assumptions
1.  Two internet connections: 1) eth0 FAST; 2) eth1 SLOW
2.  Policy routing configured so that: 1) mark=1 à eth0; 2) mark=2 à eth1

GOAL
Create two groups 1) fast, 2) slow
Create two users 1) uid: marco, gid: fast; 2) uid: lorenzo, gid: slow
Force marco and lorenzo to respectively use the fast and slow connetion

iptables -A OUTPUT -m owner --gid fast -j MARK --set-mark 1
iptables -A OUTPUT -m owner --gid slow -j MARK --set-mark 2

Queuing packets in userspace
§  NETFILTER provides a target named NFQUEUE that enques

packets to user space through a special type of sockets called
NETLINK sockets

§  Using “-j NFQUEUE” any matching packet will be sent over a
netlink queue identified with a number “--queue N”

§  In userspace, a program will be listening on the specified
queue and will receive the entire matched packet

§  The received packet can be processed in any ways and then
re-injected in the NETFILTER chains (returning ACCEPT) or
stolen (both DROP and STOLEN verdicts)

§  Example: queue all packets sent by 10.0.0.2 to queue
numeber 2
iptables -A FORWARD -s 10.0.0.2 -j NFQUEUE --queue 2

NFQUEUE structure

NETFILTER

userspace

packet

qu
eu

e
n

User space program

(1) The packet
matches a rule

(2) The packet is
sent to userspace

(3) The packet is
received and processed
by the program

(4) The packet is
either stolen or
reinjected down to
NETFILTER
(accepted)

packet

(5) The packet
keeps traversing
the NF chains

NFQUEUE configuration and usage

§  There is no time (and this is not the right
place) to play with NFQUEUE

§  Just some directions
– Project home:

http://www.netfilter.org/projects/libnetfilter_queue/index.html
– Configure the kernel to support NFQUEUE
–  Install libnetfilter_queue and libnfnetlink (which

the first one depends on)
–  In libnetfilter_queue tar there is an example main

that show the basic NFQUEUE usage
http://www.netfilter.org/projects/libnetfilter_queue/doxygen/
nfqnl__test_8c_source.html

