ROUTING PROTOCOL BASICS

Let’'s spice things up....
@ N)

pc2 N
| N _ 10.8.0.1 LAN | \
‘ \ f07 10.8.0.0/16 J
LAN D 10740 . .8.0.)

\ \
\
1030016 /" router’), 7
\ eth2: | 4 AT -7
\ | / VTt —— - -
Y 10301, _—___ / \
- router? - ~~. | LANH !
== etht: \'\ 10.7.0.016 |
7 eo 10.0.0.2 N]
\
// 10.2.0.1 \\ \\ LAN A \\\ \éthz. 7/1—__‘\\
| . o RN
, |\, 10000116 N\SZ .
// | \\ 1_/_// \
I LANC /| N eth0: LAN B Y
| 10.2.0.0116 / ~J10001 etht: 10.1.0.0/16 !
L eth: / \10.1.0.1 J
v 10202/ routert " _ eth0: pr
P 2 L/ ~.10.1.0.
_ -~ etho: . router3 T
L 10.4.0.2 ~~o S
/ eth N 7 N
, eth2: N etht: router4 "\ o
| 10L£(')40I/E16 10.4.0.1 7 10802 N 10%5.0.1 \ i 4
/ Ve
\ e \ A tho: Y, ¢th1: c4
\ o LAN L \\ / LAN F10.g.0.3 0.100.1 L AN M N
% P8 <7\ 1090016 |)
T~ --" N } T T T T 110.5.0.0/16 10.10.0.0/16 I
AN - ~ | T /
AN . etht: @tho h N \\ etho: rcl)uter& J
~.10.9.0.1 : W 10502 S~ -7
S 06.0.2 o ! S~ - -
eth1: y
routst6 LAN G 106.0.1 7
v 10.6.0.0/16 y S=-
~o _~ routers

A much more complex topology... -

Routing Protocols

Larger network topologies can'’t rely on static routing configuration
— Big topologies
— What's the best path?
— Reconfiguration?

Routing protocols define the procedures and the messages to
exchange routing information between the routers and automatically
construct the routing tables

Routing protocols make use of graph search algorithms to compute
“the best paths” between all possible destinations

— Dijkstra, Bellman-Ford

Network topologies can be modeled as weighted oriented graphs
(router, networks - nodes; links = edges; weights = link metrics)

Construction of the routing tables is equivalent to find all the “best”
paths between all nodes of the graph

— “Best” is not always equal to “shortest”
Let's take a look at a simple example of Dijkstra

Dijkstra algorithm at a glance

= The algorithm is iterative:

— At the Kt steE| we have K nodes that can be reached from the source
node S with the shortest path

— Such K nodes are in the set T={V1, V2, ..., Vm}

— At step (K+1)" add the node with the path with minimum weight from S
that transit in the node in T

— The algorithm ends when all nodes have been explored

= The weight of a path is the sum of the weights (costs) of all the edge
forming the path

Dijkstra: a simple example

Dijkstra: a simple example

Dijkstra: a simple example

T, ={1,2,4)}

Dijkstra: a simple example

T,={1,2,4,5}

Dijkstra: a simple example

T,={1,2,4,5}

Dijkstra: a simple example

How can Dijkstra be used in a
routing protocol?

There are different routing protocols that use Dijkstra
as search graph algorithm to construct the routing
tables

All the routers exchange information about all the
respective neighbor routers and the relative links to
them (neighbor routers = routers at 1 hop)

After a “convergence time” all the routers know the
complete topology

Each router constructs the graph representing the
network topology and then run Dijkstra with
themselves as source node

Such a routing protocol in called: Link State protocol

— Because every node in the network has to know the entire
topology (i.e.: the state of each link in the network

topology)

OSPF

Open Shortest Path First is a link state routing
protocol that uses Dijkstra to construct the routing
tables

Each router advertises its identity to the neighbors

Each router transmits a Link State Packet (LSP)
containing the list of the links and their costs

A LSP is transmitted to all the other routers
(flooding mechanism)

All the routers can locally build the entire network
topology by gathering all the received LSPs

Distance Vector protocols

= Adistance vector routing protocol is a protocol in
which all the routers knows only the routing tables
of their neighbors (the vectors of the distance to all
possbile destinations)

= The next hop to the other destinations is picked up
by choose the minimizing
Cost(i, d) = (L; + Cy))
= Where:
— I1s the next hop
— L, is the cost of the link to j
— d the destination
— C,;is the cost of the route to d in the routing table of /

Routing Protocol classification

IP Routing
Protocols
Interior Gateway Exterior Gateway
Protocol Protocol
Distance :
Vector EH%?IQC; EGP
RIP, IGRP

Link State
[OSPF, OLSR, ISIS] [BGP]

NOTE: Too many things about routing protocols have been ignored. We don't
want to understand the routing protocols in details, we just wanted an
introduction to understand what we are going to see in the following slides...

QUAGGA

Quagga is an opensource routing software suite, providing implementations of
OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4 for Unix platforms, particularly
FreeBSD, Linux, Solaris and NetBSD

Quagga is a fork of GNU Zebra for which development was abandoned in 2003

The Quagga architecture consists of a core daemon (zebra) that presents the Zserv
API over a Unix or TCP stream to Quagga daemons:

— ospfd for OSPFv2

— ripd for RIPv1 and RIPv2

— ospfed for OSPFv3 (IPv6)

— ripngd for RIPng (IPv6)

— bgpd for BGPv4+

— isisd for I1S-IS
The zebra daemon is responsible for providing an interface to the kernel IP and
routing subsystems

The per-protocol daemon are responsible for performing all protocol-specific
operations as described in the relevant RFCs

Each daemon has its own configuration file and terminal interface which can be
accessed by telnet

The vtysh tool is provided to configure the Quagga router from the localhost, in a
unique interface

QUAGGA configuration

Activate the daemon by putting “yes” for the protocol you need in the
file /etc/quagga/daemons

— For example: zebra=yes; ospfd=yes
— Each daemon has its own configuration file
— bgpd.conf, ospfd.conf, ripd.conf, etc..

By default, the quagga daemons are listening only to the loopback
interface 127.0.0.1. If you want to telnet a quagga daemon remotely
you can, in the /etc/quagga/debian.conf file

— Either indicate one or several IP addresses or remove the -A option
meaning that you can telnet a daemon on any of its |IP addresses

— Examples:
ospfd options=* --daemon -A 127.0.0.1 192.168.1.104"
zebra options=* --daemon”

To enable vtysh put in /etc/quagga/debian.conf
— vtysh enable=yes

QUAGGA daemons shells

= you can access the daemons by telnetting their port number
bec?fuse each daemon has its own configuration file and terminal
interface

= The daemon name/port binding is stored in /etc/services, so you can
also use the name
— telnet localhost ripd

— telnet localhost 2008

zebra 2601
Anyway, as it's not very practical to ripd 2602
configure your router by telnetting _
its daemons separately, vtysh has ripng 2603
been created to configure ospfd 2604
everything in one single interface
bgpd 2605
To connect just type: ospf6d 2606
vtysh isisd 2008

QUAGGA - configuration files

Official docs
— http://www.nongnu.org/quagga/docs

From vtysh you can configure everything
(interfaces, ip configuration, routing protocols
parameters, etc..) and dump the status of your
router (show routes, show interfaces, etc..)

We are not gonna learn how to use the vtysh
console, but we'll try to configure the quagga
daemons via configuration files

BTW, the configuration lines are exactly like the
commands you type from the shells

Simple configuration examples

I -*- zebra -*-

hostname router2
password zebra
enable password zebra

interface ethO

1p address 10.2.0.1/16
link-detect

bandwidth 100000

interface etht

1p address 10.0.0.2/16
link-detect

bandwidth 100000

interface eth2

1p address 10.3.0.1/16
link-detect

bandwidth 5000

zebra.conf

ostname router2
password zebra
log file /var/log/quagga/ospfd.log

interface ethO
ospf hello-interval 2

interface eth1
ospf hello-interval 2

interface eth2
ospf hello-interval 2

router ospf

network 10.0.0.0/16 area
network 10.2.0.0/16 area
network 10.3.0.0/16 area

ospfd.conf

Lab3-quagga
& P)

pCS{1-4} in the lab get [ez N . @10.8.0.1 LAN | \l

\ \
the .100 address of ' LAND 0MOA_¢\ 1080016
hei . ‘. 10.3.0.0/16 3 y router?‘\l\ y
\ eth2: | / ~ o _-7
their respective R —) S)
~ routers, -~ =~ |
subnets . ICECIT.
_== eth1: Ny 10.7.00/16 |
y 10.0.0.2 W /
/ ’ \ o\ /
// 10.2.01 \\\\\ LAN A \\ \é 1/’ —————
/ \ \ eth2: =7 T~
; |\ 1000016 NG, o7 N
J LANC | "~ eth0: S RN~ LAN B 3
| 10.2.0.0/16 / 10001 et 10.1.0.0/16 i
I etht: y 10.1.0.1 y
\ 10202 routert "~ _ 10?tgo: v
//’Teth/o: \\\\\\ /ioyter:g \\~;'_;@
77 104.02 ~~ A
/ eth eth2: > eth/ routerd "\
4 LANE 10401 1 nans N 1950, \ /,,-——-@
! 10.4.0.0/16 o N o ol S
\ ///‘\ LAN L \\\ 4 eth0: \ __&th1: pcd \\\
\\\ pC3 /// \\ 10.9.0.0/16 \\ 'I LAN F'|0.5.O. 0.10.0.1 LAN M \
>~ . N | _emmmme - 110500016 10.10.0.0/16]
Vas Sy /
\\\ eth1: \\\\ ethO: r0uter‘&\ y

10.6.0.1 4

~~109.01 T 10502 ~ .
o eth1: y
: : \ LAN G @ ,
Default bandwidth = 100Mbit/s o R T A
. . ~ _ -~ router.
Router3 €—> Router6 link: 40 Kbit/s ~—_- -~

router3 login: root (automatic

router3:™# ip r

10,2,0,0/16 dev eth:
10,4,0,0/16 dev ethC
10,9,0,0/16 dev eth2

Pnuturr‘“# ip r

5 devw

6 via 1
via
6 via

Lab3-quagga

router3

proto kernel
proto kernel
proto kernel

Flr"l |‘|'|] |\Hr‘r|n-'l

.l dv“ Hfhl

10.6.0.0/16 via 10.:

10.7.0.0/16 via 1

10,4,0,0/16 dev

10.5,0,0/16 via 1¢

b via !

Fr“l |‘|'|) |\Hr‘r|n-'l
.1 dev ethl
.1 dev ethl

proto kernel

ngin}

sSCope link
scope link
SCope link

scope link
proto zebra
proto zebra
proto zebra
proto zebra
proto zebra
scope link
proto zebra
proto zebra
scope link

src 10,2,0,2
metric 20
metric 20
metric 30
metric 50
metric 30
src 10,4,0,1
metric 40
metric 40
src 10,9,0,2

Intuitively, for router3 the next hop to 10.5.0.0/16 is router2 (3 hops) and not router6 (2 hops)....

Lab3-quagga

pc3 loging root {automatic login}

pc3:™# traceroute 10,10,0,100

traceroute to 10,10,0,100 {10,10,0,100), B4 hops max, 40 byte packets
10,4,0,1 (10,4,0,1) Sms Oms O ms

10,2,0,1 (10.2.0.1) 10 mse O ms 0 ms

10,0,0,1 (10,0,0,1) 2 ms O ms O ms

10,1,0,2 (10,1,0,2) Oms O ms O ms

10,5,0,3 {10,5,0,3) Oms O ms O ms

10,10,0,100 (10,10,0,100) 37 ms O ms 0 ms

F'I:;._f: : o~ #

(np) B CRRL N I G

...and, clearly, pc3 = pc4 path is: router3 = router2 - router1 - router4 - router8

Let's add this
router

// N
|
X LAN N
. 10.11.0.0/16
\
h eth1

h - 10.11.0.1

eth0:
N, 104.0

router9 >~ _

LAN E
10.4.0.0/16

And this network

Exercise

N ‘eth1: 9
\\\ etho: @10.8.0.1 LAN | \;
LAND \ 10.7.0. /N 10.8.0.0/16 y
/7
10.3.0.0/16 /~ router™ L
eth2: | / N -7
. 10.3.0.14 . f | T
S fouters- >~. | LANH |
o eth1: Ny 10.7.0016 |
etro: 10.0.0.2 l\\\\ ;
\
// 10.2.0.1 \\ \\ LAN A \\ \é J/’——~—\
/ | \ €eth2: =7 T~
y AN 10000116 N\EF .
| LANC | "~ _ o Stho. N~ LAN B
: 10.2.0.0/16 / S~ eth1: 10.1.0.0/16 Y
| etht: 4 10.1.0.1 pc2
\ 10202 7 router! "~ _ ethO: 7
N / ~~_10.1.0.
eth AN LT
eth2: ~ eth1z” router4
104017 10.0.0.2 . 10,404 \ I \@
/ \ / ethoy - <
S LAN L \\ // 10.5.0 ! /6t0h:1]:001
o7 N 1090016 I LANF 1001 1 ANM
AN I _mTTTTTE ~~_ !"105.00016 10.10.0.0/16
N eth1: g S otho:
~ : \ : routers
~~10901 1212'0 2 M _10.5.0.2 4 RN
o eth1: y e -
rout\erG LAN G 10.6.0.1 //
‘. 10.6.0.0/16 7 -~
o~ _.~" routerd

Exercise (cont.d)

= Let’s do it together starting from Lab3-
quagga

= Add router9

= Enable ospfd daemon

= Change file permission as needed

= Configure zebra

= Configure ospfd

= Start quagga

Propagate default routes with
OSPF

Let’s say a router has a default GW toward
internet.. How do | advertise this?

Use default-information directive

Originate an AS-External (type-5) LSA
describing a default route into all external-
routing capable areas

Type 5 - External LSA - these LSAs contain
information imported into OSPF from other
routing processes. They are flooded to all
areas unchanged

Add intern

/@ N e pct
[pe2 N ‘eth1:
| AN _ @10.&0.1 LAN |
\ \ ethO:
A LAN D R 10./7;6. < 10.8.0.0/16
\ 103.0.016 /" router™
N eth2: | / e .
. 10'3'0i1f’2, P 4 | T
SO routere, - \\\\ | LAN H :
== eth1: N 10.7.0.0/16 |
etro: 10.0.0.2 \\\\ J
\
// 10.2.0.1 \\ \\ LAN A \\ \ ,//, _____ R
i |\ 10000116 N\ W2 77 T
|

et access via '[AP

\19.7.0/.4//

LANC /| ~_ e, N LANB @}
10.2.0.0/16 / R U eth: 10.1.0.0/16 ,.
/

iface

h : c2
AN | ethl: y 10.1.01 P2,
LAN N A \ 10202 7 router! '~ _ 10<1et(r)1o: .
\ _————=_\ / ~<_10.1.0.
v 10.11.0.0/16 \ e \\\@@gteﬂ -
\ s ~ <
\) | 7 \\ > ~
\ eth1: / eth) ~ I \\
- 10.11.0.1 LANE 104017 ?E)hs'o . N ?:)h:‘)/o zou’[em S -
o 10.4.0.0/16 v e N 0/5:0. Y - 2
\\\-_’ - Pl AV N / 3 // .
- ?E)hg'oz 7\ LANL 4 10.5.03~ /egqu pc4 N\
7
routerd S — pe3__- \ 10.9.0.0116 I LANF 7 LANM
o il AN I T -~<_ 10500016 10.10.0.0/16
\\ eth1: g \\ \ ethO router\g\
~~109.0.1 tno: Ny 10502 . -

N

AR

Add the TAP link

to router5

eth1: ;
rout\erB LAN G 10.6.0.1 @ //
*._ 10.6.0.0/16 y
el i routerST

/

Propagate default gw

Preliminary
— Add in lab.conf:

router5[2]=tap,192.168.25.1, 192.168.25.2

— Add in routerb.startup (for masquerading and make all subnets
access the Internet)

iptables -t nat -A POSTROUTING -j MASQUERADE

A default GW is automatically installed in router5 rtable by
simply adding a TAP interface

To propagate this route unchanged to all areas:
— Add in router5/etc/quagga/ospfd.conf
default-information originate always

S test it....

"
PING 8

to router5

4 on ttyl

