
ROUTING PROTOCOL BASICS

Let’s spice things up….

A much more complex topology…

LAN A
10.0.0.0/16

LAN B
10.1.0.0/16

LAN C
10.2.0.0/16

router1

eth0:
10.0.0.1 eth1:

10.1.0.1

router2

eth0:
10.2.0.1

eth1:
10.0.0.2

LAN D
10.3.0.0/16

pc2

LAN E
10.4.0.0/16

pc3

eth1:
10.2.0.2

eth0:
10.4.0.1

eth2:
10.3.0.1

router4

LAN F
10.5.0.0/16

router5

eth0:
10.1.0.2

eth1:
10.5.0.1

LAN G
10.6.0.0/16

eth1:
10.6.0.1

eth0:
10.5.0.2

LAN H
10.7.0.0/16

eth2:
10.7.0.1

router7

LAN I
10.8.0.0/16

pc1

eth0:
10.7.0.2

eth1:
10.8.0.1

router6

LAN L
10.9.0.0/16

eth1:
10.9.0.1

eth0:
10.4.0.2

router3

eth0:
10.6.0.2

eth2:
10.9.0.2

router8

LAN M
10.10.0.0/16

pc4eth1:
10.10.0.1

eth0:
10.5.0.3

Routing Protocols
§  Larger network topologies can’t rely on static routing configuration

–  Big topologies
–  What’s the best path?
–  Reconfiguration?

§  Routing protocols define the procedures and the messages to
exchange routing information between the routers and automatically
construct the routing tables

§  Routing protocols make use of graph search algorithms to compute
“the best paths” between all possible destinations
–  Dijkstra, Bellman-Ford

§  Network topologies can be modeled as weighted oriented graphs
(router, networks à nodes; links à edges; weights à link metrics)

§  Construction of the routing tables is equivalent to find all the “best”
paths between all nodes of the graph
–  “Best” is not always equal to “shortest”

§  Let’s take a look at a simple example of Dijkstra

Dijkstra algorithm at a glance

§  The algorithm is iterative:
–  At the Kth step we have K nodes that can be reached from the source

node S with the shortest path
–  Such K nodes are in the set T={V1, V2, …, Vm}
–  At step (K+1)th add the node with the path with minimum weight from S

that transit in the node in T
–  The algorithm ends when all nodes have been explored

§  The weight of a path is the sum of the weights (costs) of all the edge
forming the path

1

3

1

4 1

1

2

4 V1

V2 V3

V4

V5
V6

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1

5 2

T1 = {1}

Step 1

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1

5 2

T1 = {1}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

4 2

T2 = {1,4}

Step 1 Step 2

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1

5 2

T1 = {1}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

4 2

T2 = {1,4}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

4 2

T3 = {1,2,4}

Step 1 Step 2

Step 3

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T4 = {1,2,4,5}

Step 4

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T4 = {1,2,4,5}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T5 = {1,2,3,4,5}

Step 4 Step 5

Dijkstra: a simple example

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T4 = {1,2,4,5}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T5 = {1,2,3,4,5}

8
5

1

1

6
3

2

1

2

7

3 3
4

2 3 2

5 8

1

1

V1

V2
V3

V4 V5

V6

0 1 2

3 4 2

T6 = {1,2,3,4,5,6}

Step 4 Step 5

Step 6

How can Dijkstra be used in a
routing protocol?

§  There are different routing protocols that use Dijkstra
as search graph algorithm to construct the routing
tables

§  All the routers exchange information about all the
respective neighbor routers and the relative links to
them (neighbor routers = routers at 1 hop)

§  After a “convergence time” all the routers know the
complete topology

§  Each router constructs the graph representing the
network topology and then run Dijkstra with
themselves as source node

§  Such a routing protocol in called: Link State protocol
–  Because every node in the network has to know the entire

topology (i.e.: the state of each link in the network
topology)

OSPF
§  Open Shortest Path First is a link state routing

protocol that uses Dijkstra to construct the routing
tables

§  Each router advertises its identity to the neighbors
§  Each router transmits a Link State Packet (LSP)

containing the list of the links and their costs
§  A LSP is transmitted to all the other routers

(flooding mechanism)
§  All the routers can locally build the entire network

topology by gathering all the received LSPs

Distance Vector protocols
§  A distance vector routing protocol is a protocol in

which all the routers knows only the routing tables
of their neighbors (the vectors of the distance to all
possbile destinations)

§  The next hop to the other destinations is picked up
by choose the minimizing

Cost(i, d) = (Li + Cd,i)
§  Where:

–  i is the next hop
–  Li is the cost of the link to i
–  d the destination
–  Cd,i is the cost of the route to d in the routing table of i

Routing Protocol classification

NOTE: Too many things about routing protocols have been ignored. We don’t
want to understand the routing protocols in details, we just wanted an
introduction to understand what we are going to see in the following slides…

IP Routing
Protocols

Interior Gateway
Protocol

Exterior Gateway
Protocol

Distance
Vector

RIP, IGRP

Link State
OSPF, OLSR, ISIS

Hybrid
EIGRP

BGP

EGP

QUAGGA
§  Quagga is an opensource routing software suite, providing implementations of

OSPFv2, OSPFv3, RIP v1 and v2, RIPng and BGP-4 for Unix platforms, particularly
FreeBSD, Linux, Solaris and NetBSD

§  Quagga is a fork of GNU Zebra for which development was abandoned in 2003
§  The Quagga architecture consists of a core daemon (zebra) that presents the Zserv

API over a Unix or TCP stream to Quagga daemons:
–  ospfd for OSPFv2
–  ripd for RIPv1 and RIPv2
–  ospf6d for OSPFv3 (IPv6)
–  ripngd for RIPng (IPv6)
–  bgpd for BGPv4+
–  isisd for IS-IS

§  The zebra daemon is responsible for providing an interface to the kernel IP and
routing subsystems

§  The per-protocol daemon are responsible for performing all protocol-specific
operations as described in the relevant RFCs

§  Each daemon has its own configuration file and terminal interface which can be
accessed by telnet

§  The vtysh tool is provided to configure the Quagga router from the localhost, in a
unique interface

QUAGGA configuration
§  Activate the daemon by putting “yes” for the protocol you need in the

file /etc/quagga/daemons!
–  For example: zebra=yes; ospfd=yes!
–  Each daemon has its own configuration file
–  bgpd.conf, ospfd.conf, ripd.conf, etc..!

§  By default, the quagga daemons are listening only to the loopback
interface 127.0.0.1. If you want to telnet a quagga daemon remotely
you can, in the /etc/quagga/debian.conf file
–  Either indicate one or several IP addresses or remove the -A option

meaning that you can telnet a daemon on any of its IP addresses
–  Examples:

ospfd_options=“ --daemon -A 127.0.0.1 192.168.1.104”!
zebra_options=“ --daemon”  
!

§  To enable vtysh put in /etc/quagga/debian.conf!
–  vtysh_enable=yes!

QUAGGA daemons shells
§  you can access the daemons by telnetting their port number

because each daemon has its own configuration file and terminal
interface

§  The daemon name/port binding is stored in /etc/services, so you can
also use the name
–  telnet localhost ripd!
–  telnet localhost 2008!

zebra 2601

ripd 2602

ripng 2603

ospfd 2604

bgpd 2605

ospf6d 2606

isisd 2008

Anyway, as it's not very practical to
configure your router by telnetting
its daemons separately, vtysh has
been created to configure
everything in one single interface

To connect just type:

 vtysh !

QUAGGA - configuration files
§  Official docs

–  http://www.nongnu.org/quagga/docs
§  From vtysh you can configure everything

(interfaces, ip configuration, routing protocols
parameters, etc..) and dump the status of your
router (show routes, show interfaces, etc..)

§  We are not gonna learn how to use the vtysh
console, but we’ll try to configure the quagga
daemons via configuration files

§  BTW, the configuration lines are exactly like the
commands you type from the shells

Simple configuration examples

zebra.conf

ospfd.conf

Lab3-quagga

Default bandwidth = 100Mbit/s
Router3 ßà Router6 link: 40 Kbit/s

pcs{1-4} in the lab get
the .100 address of
their respective
subnets

LAN A
10.0.0.0/16

LAN B
10.1.0.0/16

LAN C
10.2.0.0/16

router1

eth0:
10.0.0.1 eth1:

10.1.0.1

router2

eth0:
10.2.0.1

eth1:
10.0.0.2

LAN D
10.3.0.0/16

pc2

LAN E
10.4.0.0/16

pc3

eth1:
10.2.0.2

eth0:
10.4.0.1

eth2:
10.3.0.1

router4

LAN F
10.5.0.0/16

router5

eth0:
10.1.0.2

eth1:
10.5.0.1

LAN G
10.6.0.0/16

eth1:
10.6.0.1

eth0:
10.5.0.2

LAN H
10.7.0.0/16

eth2:
10.7.0.1

router7

LAN I
10.8.0.0/16

pc1

eth0:
10.7.0.2

eth1:
10.8.0.1

router6

LAN L
10.9.0.0/16

eth1:
10.9.0.1

eth0:
10.4.0.2

router3

eth0:
10.6.0.2

eth2:
10.9.0.2

router8

LAN M
10.10.0.0/16

pc4eth1:
10.10.0.1

eth0:
10.5.0.3

Lab3-quagga

Intuitively, for router3 the next hop to 10.5.0.0/16 is router2 (3 hops) and not router6 (2 hops)….

Lab3-quagga

…and, clearly, pc3 à pc4 path is: router3 à router2 à router1 à router4 à router8

LAN A
10.0.0.0/16

LAN B
10.1.0.0/16

LAN C
10.2.0.0/16

router1

eth0:
10.0.0.1 eth1:

10.1.0.1 pc2

router2

eth0:
10.2.0.1

eth1:
10.0.0.2

LAN D
10.3.0.0/16

pc2

LAN E
10.4.0.0/16

pc3

eth1:
10.2.0.2

eth0:
10.4.0.1

eth2:
10.3.0.1

router4

LAN F
10.5.0.0/16

router5

eth0:
10.1.0.2

eth1:
10.5.0.1

LAN G
10.6.0.0/16

eth1:
10.6.0.1

eth0:
10.5.0.2

LAN H
10.7.0.0/16

eth2:
10.7.0.1

router7

LAN I
10.8.0.0/16

pc1

eth0:
10.7.0.2

eth1:
10.8.0.1

router6

LAN L
10.9.0.0/16

eth1:
10.9.0.1

eth0:
10.4.0.2

router3

eth0:
10.6.0.2

eth2:
10.9.0.2

router9

LAN N
10.11.0.0/16

eth1:
10.11.0.1

pc5

router8

LAN M
10.10.0.0/16

pc4eth1:
10.10.0.1

eth0:
10.5.0.3

Exercise

Let’s add this
router

And this network

Exercise (cont.d)

§  Let’s do it together starting from Lab3-
quagga

§  Add router9
§  Enable ospfd daemon
§  Change file permission as needed
§  Configure zebra
§  Configure ospfd
§  Start quagga

Propagate default routes with
OSPF

§  Let’s say a router has a default GW toward
internet.. How do I advertise this?

§  Use ���default-information directive
§  Originate an AS-External (type-5) LSA

describing a default route into all external-
routing capable areas

§  Type 5 - External LSA - these LSAs contain
information imported into OSPF from other
routing processes. They are flooded to all
areas unchanged

LAN A
10.0.0.0/16

LAN B
10.1.0.0/16

LAN C
10.2.0.0/16

router1

eth0:
10.0.0.1 eth1:

10.1.0.1 pc2

router2

eth0:
10.2.0.1

eth1:
10.0.0.2

LAN D
10.3.0.0/16

pc2

LAN E
10.4.0.0/16

pc3

eth1:
10.2.0.2

eth0:
10.4.0.1

eth2:
10.3.0.1

router4

LAN F
10.5.0.0/16

router5

eth0:
10.1.0.2

eth1:
10.5.0.1

LAN G
10.6.0.0/16

eth1:
10.6.0.1

eth0:
10.5.0.2

LAN H
10.7.0.0/16

eth2:
10.7.0.1

router7

LAN I
10.8.0.0/16

pc1

eth0:
10.7.0.2

eth1:
10.8.0.1

router6

LAN L
10.9.0.0/16

eth1:
10.9.0.1

eth0:
10.4.0.2

router3

eth0:
10.6.0.2

eth2:
10.9.0.2

router9

LAN N
10.11.0.0/16

eth1:
10.11.0.1

pc5

router8

LAN M
10.10.0.0/16

pc4eth1:
10.10.0.1

eth0:
10.5.0.3

Add internet access via TAP iface

Add the TAP link
to router5

TAP
INTERNET

Propagate default gw
§  Preliminary

–  Add in lab.conf:
router5[2]=tap,192.168.25.1, 192.168.25.2!

–  Add in router5.startup (for masquerading and make all subnets
access the Internet)
iptables -t nat -A POSTROUTING -j MASQUERADE !

§  A default GW is automatically installed in router5 rtable by
simply adding a TAP interface

§  To propagate this route unchanged to all areas:

–  Add in router5/etc/quagga/ospfd.conf
! ���default-information originate always!

Let’s test it….

to router5

