
VIRTUAL PRIVATE NETWORK

Virtual Private Networks
§  A virtual private network (VPN) is a private network that

interconnects remote (and often geographically
separate) networks through primarily public
communication infrastructures such as the Internet

§  VPNs provide security through tunneling protocols and
security procedures such as encryption
–  Tunneling provides also reachability of private subnetworks

§  There are two main types of VPN:
–  remote-access VPNs allow individual users to connect to a

remote network such as roaming salespeople connecting to
their company's intranet

–  Site-to-site VPNsallow inter-connection of networks of
multiple users for example, branch offices to the main
company network

Virtual Private Networks

Virtual Private Networks: why?
Corporate

 office
Paris

160.80.80.0/24

Corporate
office

London
160.80.81.0/24

Dedicated P2P line: too costly

Corporate
 office
Paris

160.80.80.0/24

Corporate
office

London
160.80.81.0/24

Public Internet or operator IP network:
Emerging issues:
-  How to manage private address space across distributed sites?
-  How to protect data in transit (especially if public Internet)?

Virtual Networks à tunnels

Virtual Networks over IP

§  IP in IP tunnels
–  Not the most effective approach!

§  MPLS tunnels by far more performance effective
–  Typical VPN offer from today operators

–  MPLS tunnels alone = VPN without the “P” J
–  However customer may trust operator (the only one with “hands on”

the net)

IP
D:160.80.81.6

Incapsulate

160.80.80.2 160.80.81.6
212.1.1.1 89.2.3.4

Decapsulate

IP
d:160.80.81.6

IP
d:160.80.81.6

IP
D:89.2.3.4

Private Networks: encryption

IP DATA IP DATA
IP encrypted

encrypt decrypt

GW to GW basis

IP encrypted

encrypt decrypt

End-To-End Basis

IP encrypted IP encrypted

OpenVPN
§  tunnel any IP subnetwork or virtual ethernet adapter over a single UDP or TCP port
§  configure a scalable, load-balanced VPN server farm using one or more machines which

can handle thousands of dynamic connections from incoming VPN clients
§  use all of the encryption, authentication, and certification features of the OpenSSL library to

protect your private network traffic as it transits the internet
§  use any cipher, key size, or HMAC digest (for datagram integrity checking) supported by

the OpenSSL library
§  choose between static-key based conventional encryption or certificate-based public key

encryption
§  use static, pre-shared keys or TLS-based dynamic key exchange
§  use real-time adaptive link compression and traffic-shaping to manage link bandwidth

utilization
§  tunnel networks whose public endpoints are dynamic such as DHCP or dial-in clients
§  tunnel networks through connection-oriented stateful firewalls without having to use explicit

firewall rules
§  tunnel networks over NAT
§  create secure ethernet bridges using virtual tap devices

TUN/TAP drivers

TUN/TAP
L2 driver

Application
TX/RX

TUN/TAP
“listening”
application

“Real” NIC
L2 driver

socket

socket

user space

kernel

§  TUN is a virtual Point-to-Point
network device for IP tunneling

§  TAP is a virtual Ethernet
network device for Ethernet
tunneling

§  Userland application can write
{IP|Ethernet} frame to /dev/{tun|
tap}X and kernel will receive
this frame from {tun|tap}X
interface

§  In the same time every frame
that kernel writes to {tun|tap}X
interface can be read by
userland application from {tun|
tap}X device

OpenVPN architecture

TX/RX
App

OpenVPN
client

Host (not necessarily with private IP address priv)

TCP/UDP tunnel
“NAT friendly”

OpenVPN
server

Public Server pub:port

IP
s: tun/tap_a
oif: tun/tap

TCP/UDP +
“whatever”

IP
s: priv
d: pub

TCP/UDP
s: rand
d: port

encrypted

From client to server

Userspace application packet

Tunneled OpenVPN packet

ip.s and L4.s may be NATed

OpenVPN PKI
§  The first step in building an OpenVPN 2.0 configuration is to

establish a PKI which consists of:
–  a separate certificate (also known as a public key) and private key for

the server and each client
–  a master Certificate Authority (CA) certificate and key which is used to

sign each of the server and client certificates
§  OpenVPN supports bidirectional authentication based on

certificates, meaning that the client must authenticate the server
certificate and the server must authenticate the client certificate
before mutual trust is established

§  Both server and client will authenticate the other by first verifying
that the presented certificate was signed by the master certificate
authority (CA), and then by testing information in the now-
authenticated certificate header, such as the certificate common
name or certificate type (client or server)

This tutorial is based on the following link:
http://openvpn.net/index.php/open-source/documentation/howto.html

OpenVPN security model
§  This security model has a number of desirable features from the

VPN perspective:
–  The server only needs its own certificate/key -- it doesn't need to know

the individual certificates of every client which might possibly connect to
it.

–  The server will only accept clients whose certificates were signed by the
master CA certificate (which we will generate below). And because the
server can perform this signature verification without needing access to
the CA private key itself, it is possible for the CA key (the most sensitive
key in the entire PKI) to reside on a completely different machine, even
one without a network connection.

–  If a private key is compromised, it can be disabled by adding its
certificate to a CRL (certificate revocation list). The CRL allows
compromised certificates to be selectively rejected without requiring that
the entire PKI be rebuilt.

–  The server can enforce client-specific access rights based on
embedded certificate fields, such as the Common Name.

Lab10-vpn-1
Tunnel from vpn client1 to vpn server

VPN network: 192.168.100.0/24

vpn address 192.168.100.101 vpn address 192.168.100.1

INTERNETLAN A
10.0.0.0/24

r1client1_vpn

LAN B
192.168.0.0/24

p_host

eth0:10.0.0.100

eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.2
eth0: 8.0.0.2

eth0:192.168.0.100
r_server_vpn

Generate the master Certificate
Authority (CA) certificate & key

§  We’ll use set of scripts bundled with OpenVPN
–  In netkit, cd into the directory: /usr/share/doc/
openvpn/example/easy-rsa/2.0!

§  Edit the vars file on r_server_vpn

Initialize the PKI
r_server_vpn# . ./vars!
r_server_vpn# ./clean-all!
r_server_vpn# ./build-ca!

The final command (build-ca) will build the certificate authority (CA)
certificate and key by invoking the interactive openssl command. Most
queried parameters were defaulted to the values set in the vars file. The
only parameter which must be explicitly entered is the Common Name.

Generate certificate & key for
server and clients

Generate a certificate and private key for the server

Generate client keys and certificates

Diffie Hellman parameters must be generated for the OpenVPN server

r_server_vpn# ./build-key-server server!

r_server_vpn# ./build-key client1!

r_server_vpn# ./build-dh!

Key and certificate files

Creating configuration files for
server and clients

§  The best way to configure the clients and
server is to start from the example
configuration files in: /usr/share/doc/
openvpn/example/sample-config-
files/!
– client.conf!
– server.conf.gz!

Server configuration
§  Important options

–  port [port_number]!
–  proto {udp|tcp}!
–  dev {tun|tap}!
–  ca [path]!
–  cert [path]!
–  key [path]!
–  server [net_addr] [met_mask]!
–  client_to_client!
–  push "route net_addr net_mask"!
–  route net_addr net_mask!
–  client-config-dir [path]!
–  tls-auth [path] 0!

r_server_vpn configuration

port 1194!
proto udp!
dev tun!
cert /root/server.crt!
key /root/server.key!
dh /root/dh.pem!
server 192.168.100.0 255.255.255.0!
push "route 192.168.0.0 255.255.255.0”!
client-config-dir /root/ccd!
client-to-client!
keepalive 10 120!
comp-lzo!
persist-key!
persist-tun!
status openvpn-status.log!
verb 3!

r_server_vpn~# openvpn server.conf

client-config-dir
§  A file for each OpenVPN client “CN”

–  In this lab: client1
§  In each file (+ other commands we’re not considering):

–  if-config-push [local_ptp] [remote_ptp]
–  iroute [net_addr] [net_mask]

§  client1
–  if-config-push 192.168.100.101 192.168.100.102!

Allowed /30 pairs

Client configuration

§  Important options
– port [port_number]!
– proto {udp|tcp}!
– dev {tun|tap}!
– remote [server_addr] [port]!
– ca [path]!
– cert [path]!
– key [path] !
– tls-auth [path] 1!

Client configuration

client!
dev tun!
proto udp!
remote 8.0.0.2 1194!
resolv-retry infinite!
nobind!
persist-key!
persist-tun!
ca /root/ca.crt!
cert /root/client1.crt!
key /root/client1.key!
ns-cert-type server!
comp-lzo!
verb 3!

client1_vpn~# openvpn client.conf

Why push route?

INTERNETLAN A
10.0.0.0/24

r1client1_vpn

LAN B
192.168.0.0/24

p_host

eth0:10.0.0.100

eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.2
eth0: 8.0.0.2

eth0:192.168.0.100
r_server_vpn

§  Without that a packet from client1_vpn to
192.168.0.0/24 would be delivered to r1

§  r1 would discard it as it would not know the route
§  With push route client1_vpn packets to

192.168.0.0/24 are correctly send out through tun0
and properly delivered via the OpenVPN tunnel

INTERNETLAN A
10.0.0.0/24

r1client1_vpn

LAN B
192.168.0.0/24

p_host

eth0:10.0.0.100

eth1:10.0.0.1
eth0: 8.0.0.1

eth1:192.168.0.2
eth0: 8.0.0.2

eth0:192.168.0.100
r_server_vpn

r_client2_vpn

eth0: 8.0.0.3
eth1:10.100.0.1

LAN C
10.100.0.0/24

pc
eth0:10.100.0.100

Lab10-vpn-2
Tunnel from vpn client1 to vpn server

VPN network: 192.168.100.0/24

vpn address 192.168.100.105

vpn address 192.168.100.101 vpn address 192.168.100.1

r_server_vpn configuration

port 1194!
proto udp!
dev tun!
cert /root/server.crt!
key /root/server.key!
dh /root/dh.pem!
server 192.168.100.0 255.255.255.0!
ifconfig-pool-persist ipp.txt!
push "route 192.168.0.0 255.255.255.0”!
route 10.100.0.0 255.255.255.0!
client-config-dir /root/ccd!
client-to-client!
keepalive 10 120!
comp-lzo!
persist-key!
persist-tun!
status openvpn-status.log!
verb 3!

r_server_vpn~# openvpn server.conf

Why 2 route to 10.100.0.0/24?

§  Client2 ccd configuration
if-config-push 192.168.100.105 192.168.100.106!
iroute 10.100.0.0 255.255.255.0

§  Both route and iroute statements are
necessary for network 10.100.0.0/24

§  “route” controls the routing from the kernel to
the OpenVPN server (via the TUN interface)

§  “iroute” controls the routing from the
OpenVPN server to the remote clients

Clients configuration

client!
dev tun!
proto udp!
remote 8.0.0.2 1194!
resolv-retry infinite!
nobind!
persist-key!
persist-tun!
ca /root/ca.crt!
cert /root/client2.crt!
key /root/client2.key!
ns-cert-type server!
comp-lzo!
verb 3!

client!
dev tun!
proto udp!
remote 8.0.0.2 1194!
resolv-retry infinite!
nobind!
persist-key!
persist-tun!
ca /root/ca.crt!
cert /root/client1.crt!
key /root/client1.key!
ns-cert-type server!
comp-lzo!
verb 3!

client1_vpn r_client2_vpn

r_client2_vpn~# openvpn client.conf client1_vpn~# openvpn client.conf

